2 research outputs found

    A new-fangled connection of UPQC tailored power device from wind farm to weak-grid

    Get PDF
    A significant portion of wind power conversion systems worldwide comprise wind farms (WFs) that use Squirrel Cage Induction Generator (SCIG) and are directly linked to the power grid. In facilities that generate electrical energy at a moderate level, WFs are connected by means of distribution systems that use medium voltage (MV). It is not uncommon for such a system to produce a scenario in which the amount of electricity generated corresponds to the grid’s transit volume. When a wind farm’s wind power generation system is connected to a weak grid, the lack of potential control of the Point of Common Coupling (PCC) is a primary issue. This strategy is called a “Wind Farm with Weak Grid Connection.” Therefore, the amalgamation of weak grids, fluctuating electricity from wind, and variations in load on the system cause disruptions in the PCC voltage, further degrading the Power Quality (PQ) and the WF stability. Either the control method at the production level or the compensating strategies at the PCC level can improve this situation. If wind farms are built on SCIG and are directly linked to the grid, it is essential to utilise the last substitute. The technology known as Custom Power Devices (CUPS), proved extremely helpful for this type of application. This study presents a compensation technique based on a specific CUPS device, known as the Unified Power Quality Compensator (UPQC), as a possible solution. The potential terminals of WF needed to be regulated, and the voltage fluctuations on the grid side required to be reduced, so a custom-made control strategy for the UPQC device was designed internally. The control of power, such as active and reactive in the UPQC’s series and shunt converters, as well as the transmission of power via the UPQC DC-Link between converters, are the foundation of the internal control strategy that has been developed. Compared to other bespoke tactics that use reactive power, this strategy increases the UPQC’s capability to provide compensation. The suggested study calculates THD using a FUZZY controller. The results are compared to PI controller results. Simulation findings show how the suggested compensating strategy can minimise THD values and improve wind farm power and stability. The simulations suggest that the proposed compensating strategy enhances WF power and stability

    Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia

    No full text
    The economic growth and demographic progression in Saudi Arabia increased spending on the development of conventional power plants to meet the national energy demand. The conventional generation and continued use of fossil fuels as the main source of electricity will raise the operational environmental impact of electricity generation. Therefore, using different renewable energy sources might be a solution to this issue. In this study, a grid-connected solar PV-wind hybrid energy system has been designed considering an average community load demand of 15,000 kWh/day and a peak load of 2395 kW. HOMER software is used to assess the potential of renewable energy resources and perform the technical and economic analyses of the grid-connected hybrid system. The meteorological data was collected from the Renewable Resources Atlas developed by the King Abdullah City of Atomic and Renewable Energy (KACARE). Four different cities in the Kingdom of Saudi Arabia, namely, the cities of Riyadh, Hafar Albatin, Sharurah, and Yanbu were selected to do the analyses. The simulation results show that the proposed system is economically and environmentally feasible at Yanbu city. The system at this city has the lowest net present cost (NPC) and levelized the cost of energy (LCOE), highest total energy that can be sold to the grid, as well as the lowest CO2 emissions due to a highly renewable energy penetration. This grid-connected hybrid system with the proposed configuration is applicable for similar meteorological and environmental conditions in the region, and around the world. Reduction of some greenhouse gasses as well as the reduction of energy costs are main contributors of this research
    corecore