236 research outputs found

    New treatment of breakup continuum in the method of continuum discretized coupled channels

    Get PDF
    A new method of pseudo-state discretization is proposed for the method of continuum discretized coupled channels (CDCC) to deal with three-body breakup processes. We propose real- and complex-range Gaussian bases for the pseudo-state wave functions, and show that they form in good approximation a complete set in the configuration space which is important for breakup processes. Continuous S-matrix elements are derived with the approximate completeness from discrete ones calculated by CDCC. Accuracy of the method is tested quantitatively for two realistic examples, d+58^{58}Ni scattering at 80 MeV and 6^{6}Li+40^{40}Ca scattering at 156 MeV with the satisfactory results. Possibility of application of the method to four-body breakup processes is also discussed.Comment: 10 pages, 14 Postscript figures, uses REVTeX 4, submitted to Phys. Rev.

    Continuum-discretized coupled-channels method for four-body breakup reactions

    Full text link
    Development of the method of CDCC (Continuum-Discretized Coupled-Channels) from the level of three-body CDCC to that of four-body CDCC is reviewed. Introduction of the pseudo-state method based on the Gaussian expansion method for discretizing the continuum states of two-body and three-body projectiles plays an essential role in the development. Furthermore, introduction of the complex-range Gaussian basis functions is important to improve the CDCC for nuclear breakup so as to accomplish that for Coulomb and nuclear breakup. A successful application of the four-body CDCC to 6^6He+12^{12}C scattering at 18 and 229.8 MeV is reported.Comment: Latex file of revtex4 class, 14 pages, 10 figures. A talk given at the Workshop on Reaction Mechanisms for Rare Isotope Beams, Michigan State University, March 9-12, 2005 (to appear in an AIP Conference Proceedings

    The Brieva-Rook Localization of the Microscopic Nucleon-Nucleus Potential

    Full text link
    The nonlocality of the microscopic nucleon-nucleus optical potential is commonly localized by the Brieva-Rook approximation. The validity of the localization is tested for the proton+90^{90}Zr scattering at the incident energies from 65 MeV to 800 MeV. The localization is valid in the wide incident-energy range.Comment: 20 pages, 8 figure

    Continuum-discretized coupled-channels method for four-body nuclear breakup in 6^6He+12^{12}C scattering

    Full text link
    We propose a fully quantum-mechanical method of treating four-body nuclear breakup processes in scattering of a projectile consisting of three constituents, by extending the continuum-discretized coupled-channels method. The three-body continuum states of the projectile are discretized by diagonalizing the internal Hamiltonian of the projectile with the Gaussian basis functions. For 6^6He+12^{12}C scattering at 18 and 229.8 MeV, the validity of the method is tested by convergence of the elastic and breakup cross sections with respect to increasing the number of the basis functions. Effects of the four-body breakup and the Borromean structure of 6^6He on the elastic and total reaction cross sections are discussed.Comment: 5 pages, 6 figures, uses REVTeX 4, submitted to Phys. Rev.

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    Cosmological Constraints on Newton's Constant

    Full text link
    We present cosmological constraints on deviations of Newton's constant at large scales, analyzing latest cosmic microwave background (CMB) anisotropies and primordial abundances of light elements synthesized by big bang nucleosynthesis (BBN). BBN limits the possible deviation at typical scales of BBN epoch, say at 10^8 \sim 10^12m, to lie between -5% and +1% of the experimental value, and CMB restricts the deviation at larger scales 10^2 \sim 10^9pc to be between -26% and +66% at the 2\sigma confidence level. The cosmological constraints are compared with the astronomical one from the evolution of isochrone of globular clusters.Comment: 4 pages, 5 figure

    Localization of Gravity on Brane Embedded in AdS5AdS_5 and dS5dS_5

    Get PDF
    We address the localization of gravity on the Friedmann-Robertson-Walker type brane embedded in either AdS5AdS_{5} or dS5dS_{5} bulk space,and derive two definite limits between which the value of the bulk cosmological constant has to lie in order to localize the graviton on the brane.The lower limit implies that the brane should be either dS4dS_{4} or 4d Minkowski in the AdS5AdS_{5} bulk.The positive upper limit indicates that the gravity can be trapped also on curved brane in the dS5dS_{5} bulk space.Some implications to recent cosmological scenarios are also discussed.Comment: 18 pages, 3 figures, Latex fil

    Evolution of Thick Walls in Curved Spacetimes

    Full text link
    We generalize our previous thick shell formalism to incorporate any codimension-1 thick wall with a peculiar velocity and proper thickness bounded by arbitrary spacetimes. Within this new formulation we obtain the equation of motion of a spherically symmetric dust thick shell immersed in vacuum as well as in Friedmann-Robertson-Walker spacetimes.Comment: 8 pages, 1 figur
    • …
    corecore