29 research outputs found

    Tracking the apparent location of targets in interpolated motion

    Get PDF
    AbstractUnder appropriate conditions, a target moving in discrete steps can appear to move smoothly and continuously even within the portions of the path where no physical stimulus is present. We investigated the nature of this interpolated motion in attentive tracking displays as well as apparent motion. The results showed that the apparent location of the target moved smoothly through space between the two discrete locations and the judgements of interpolated motion for attentive tracking and apparent motion were comparable to those for continuous motion in both the perceived path and the precision of the judgements. There were few, if any, differences between judgements for real and interpolated motion. An alignment procedure showed that the smooth change in location judgements was real and not a consequence of averaging across discrete locations actually seen on each trial. We also found that the slowest alternation rate which supported accurate location judgements corresponded to a critical SOA of about 500 ms, similar to the longest SOA which supported a subjective impression of motion in the display. Deviations from a constant velocity which were shorter than 200 ms did not register in the judged motion path, suggesting a fairly long time constant for the integration of velocity information into the perceived motion. These results suggest a specialized motion analysis which provides an accurate, explicit model of the interpolated motion path

    P1-15: Categorical Color Perception of LED Illuminant Color for Deuteranomals

    No full text
    Color information has great value in our everyday lives, but it is not mindful of people with color vision deficiency (CVD). We can choose several color names to categorize a lot of colors around us. Eleven color names (white, black, red, green, yellow, blue, brown, orange, pink, and gray) are known as basic color categories, but people with CVD cannot necessarily describe colors as people who are color vision normal (CVN) do. Previous studies showed that it was hard for people with CVD to discriminate illuminant color from object color, and their color perception changed largely depending on experimental conditions. In this study we investigated categorical color perception of illuminant color for deuteranomals, using a mixture of light which consists of a red, a green, and a blue LED as a test stimulus. We tested those stimuli with three luminance levels (180 cd/m2, 18 cd/m2, 1.8 cd/m2) and two visual angles (10 deg, 0.5 deg). Subjects were three deuteranomals and three people who are CVN. Our result showed that the categorical color of mild deuteranomals was similar to that of those who were CVN, but that of severe deuteranomals was not. Severe deuteranomals judged more low chromatic colors as achromatic colors than those who were CVN. The smaller visual angle or lower luminance level the test stimulus had, the more deuteranomals confused color. The results suggest that the effect of the Bezold-Brucke phenomenon is greater to deuteranomals than to those who are CVN. Furthermore, deuteranomals use not only chromatic information but also luminance information when they describe color

    Attentional facilitation of detection of flicker on moving objects Satoshi Shioiri

    No full text
    We investigated the influence of attention and motion on the sensitivity of flicker detection for a target among distractors. Experiment 1 showed that when the target and distractors were moving, detection performance plummeted compared to when they were not moving, suggesting that the most sensitive detectors were local, temporal frequency-tuned receptive fields. With the stimuli in motion, a qualitatively different strategy was required and this led to much reduced performance. Cueing, which specified the target location with 100% validity, had no effect for targets that had little or no motion, suggesting that the flicker was sufficiently salient in this case to attract attention to the target without requiring any search. For targets with medium to high speeds, however, cueing provided a strong increase in sensitivity over uncued performance. This suggests a significant advantage for localizing and tracking the target and so sampling the luminance changes from only one trajectory. Experiment 2 showed that effect of attention was to increase the efficiency and duration of signal integration for the moving target. Overall, the results show that flicker sensitivity for a moving target relies on a much less efficient process than detection of static flicker, and that this less efficient process is facilitated when attention can select the relevant trajectory and ignore the others

    Technique to investigate the temporal phase shift between L-and M-cone inputs to the luminance mechanism

    No full text
    We describe a technique to estimate the intrinsic phase shift between long-wavelength-cone (L-cone) and middle-wavelength-cone (M-cone) signals in the luminance mechanism with minimal contamination by chromatic mechanism(s). The technique can also estimate, simultaneously with the phase shift, the weight ratio of L and M cones for the luminance mechanism. We measured motion identification thresholds for a 1.0 cycle/ deg, 12.0-Hz sinusoidal grating representing different vector directions in L-and M-cone contrast space. The physical phase of the L-and M-cone signals was varied over a broad range between Ϫ150 deg and ϩ150 deg to investigate the effect on the threshold contours. The slope of the threshold contour in cone contrast space varied as a function of the physical phase. Estimates of the intrinsic phase shift between L and M cones are based on the change in slope of the threshold contour. The estimates are consistent with previous reports and show that whereas the L-cone signal lags behind the M-cone signal by ϳ35 deg for an orange background, the M-cone signal lags behind the L-cone signal by ϳ8 deg for a green background
    corecore