1,230 research outputs found

    Estimating Evapotranspiration from Satellite Using Easily Obtainable Variables: A Case Study over the Southern Great Plains, U.S.A.

    Get PDF
    Evapotranspiration (ET) is a critical component of the Earth's water budget, a critical modulator of land-atmosphere (L-A) interactions, and also plays a crucial role in managing the Earth's energy balance. In this study, the feasibility of generating spatially-continuous daily evaporative fraction (EF) and ET from minimal remotely-sensed and meteorological inputs in a trapezoidal framework is demonstrated. A total of four variables, Normalized Difference Vegetation Index (NDVI), Land surface temperature (T(sub s)), gridded daily average temperature (T(sub a)) and elevation (z) are required to estimate EF. Then, ET can be estimated with the available soil heat flux (G) and net radiation (Rn) data. Firstly, the crucial model variable, T(sub s)-T(sub a), is examined how well it characterizes the variation in EF using in situ data recorded at two eddy correlation flux towers in Southern Great Plains, U.S.A. in 2011. Next, accuracy of satellite-based T(sub s) are compared to ground-based T(sub s). Finally, EF and ET estimates are validated. The results reveal that the model performed satisfactorily in modeling EF and ET variation at winter wheat and deciduous forest during the high evaporative months. Even though the model works best with the observed MODIS-T(sub s) as opposed to temporally interpolated T(sub s), results obtained from interpolated T(sub s) are able to close the gaps with reasonable accuracy. Due to the fact that T(sub s)-T(sub a), is not a good indicator of EF outside the growing season when deciduous forest is dormant, potential improvements to the model are proposed to improve accuracy in EF and ET estimates at the expense of adding more variables

    In Situ Synthesis of Polymer/Clay Nanocomposites by Type II Photoinitiated Free Radical Polymerization

    Get PDF
    Cataloged from PDF version of article.A new synthetic route for the preparation of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites was reported. In this method, first 4-(dimethylamino)benzoate group was incorporated into silicate layers of clay by esterification reaction and used to produce PMMA/MMT nanocomposites by in situ Type II photoinitiated free radical polymerization. In situ photopolymerization of methyl methacrylate through into the silicate layers by either visible or UV light irradiation leads to PMMA/MMT nanocomposites. Copyright © 2011 Wiley Periodicals, Inc

    Sulfatide mediates attachment of Pseudomonas aeruginosa to human pharyngeal epithelial cells

    Get PDF
    Pseudomonas aeruginosa infections are particularly common in people with cystic fibrosis and despite regular treatment with antibiotics, lung damage due to chronic infection with P. aeruginosa remains the major cause of death in those patients. In order to initiate an infection, P. aeruginosa needs contact with the respiratory epithelial surface and by means of its adhesins i.e., fimbria, hemagglutinins,etc., it recognizes and adheres to the corresponding epithelial receptors. We treated P. aeruginosa strains isolated from sputum of cystic fibrosis patients with several glycolipids such as sulfatide, sulfated ganglioside mixture (GM1a, GD1b, GT1b), asialo-GM1 and galactocerebrosides to determine their effect on attachment with pharyngeal epithelial cells. Sulfated ganglioside mixture and sulfatide inhibited the attachment of P. aeruginosa significantly, whereas asialo-GM1, Gal-Cer and sodium sulfite had no effect on attachment inhibition. This finding suggests that sulfated glycoconjugates found in the extracellular matrix, in mucus and on the surface of epithelial cells of human trachea and lung mediates attachment of P. aeruginosa

    Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization

    Get PDF
    Cataloged from PDF version of article.PSU/MMT nanocomposites are prepared by dispersing MMT nanolayers in a PSU matrix via in situ photoinduced crosslinking polymerization. Intercalated methacrylate-functionalized MMT and polysulfone dimethacrylate macromonomer are synthesized independently by esterification. In situ photoinduced crosslinking of the intercalated monomer and the PSU macromonomer in the silicate layers leads to nanocomposites that are formed by individually dispersing inorganic silica nanolayers in the polymer matrix. The morphology of the nanocomposites is investigated by XRD and TEM, which suggests the random dispersion of silicate layers in the PSU matrix. TGA results confirm that the thermal stability and char yield of PSU/MMT nanocomposites increases with the increase of clay loading

    Synthesis of liquid crystalline graft and block copolymers by sequential cationic and free-radical polymerizations

    Get PDF
    Abstraet-New graft and block copolymers were synthesized by two procedures, each consisting of a sequence of cationic and free-radical polymerization reactions. One polymer component was a liquid crystalline side-group polymer, with the other polymer component being incorporated in crystalline grafts or in amorphous blocks. The copolymers were microphase-separated and underwent thermal transitions (glass, melting, isotropization) of each individual component

    A Comparison of Satellite Data-Based Drought Indicators in Detecting the 2012 Drought in the Southeastern US

    Get PDF
    The drought of 2012 in the North America devastated agricultural crops and pastures, further damaging agriculture and livestock industries and leading to great losses in the economy. The drought maps of the United States Drought Monitor (USDM) and various drought monitoring techniques based on the data collected by the satellites orbiting in space such as the Gravity Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the southeastern United States. The results indicated that spatial extent of drought reported by USDM were in general agreement with those reported by the MODIS-based drought maps. GRACE-based drought maps suggested that the southeastern US experienced widespread decline in surface and root-zone soil moisture and groundwater resources. Disagreements among all drought indicators were observed over irrigated areas, especially in Lower Mississippi region where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation response to changes in soil moisture and groundwater partly contributed to these disagreements, as well

    Heparin Mimetic Peptide Nanofibers Promote Angiogenesis

    Get PDF
    Cataloged from PDF version of article.New blood vessel formation (angiogenesis) is one of the most important processes required for functional tissue formation. Induction of angiogenesis is usually triggered by growth factors released by cells. Glycosaminoglycans (e.g., heparan sulphates) in the extracellular matrix aid in proper functioning of these growth factors. Therefore, exogeneous heparin or growth factors were required for promoting angiogenesis in previous regenerative medicine studies. Here we report for the first time induction of angiogenesis by a synthetic nanofibrous peptide scaffold without the addition of any exogenous growth factors or heparin. We designed and synthesized a self-assembling peptide amphiphile molecule that is functionalized with biologically active groups to mimic heparin. Like heparin, this molecule has the ability to interact with growth factors and effectively enhance their bioactivity. The nanofibers formed by these molecules were shown to form a 3D network mimicking the structural proteins in the extracellular matrix. Because of heparin mimicking capabilities of the peptide nanofibers, angiogenesis was induced without the addition of exogenous growth factors in vitro. Bioactive interactions between the nanofibers and the growth factors enabled robust vascularization in vivo as well. Heparin mimetic peptide nanofibers presented here provide new opportunities for angiogenesis and tissue regeneration by avoiding the use of heparin and exogenous growth factors. The synthetic peptide nanofiber scaffolds enriched with proper chemical functional groups shown in this study can be used to induce various desired physiological responses for tissue regeneration. © 2011 American Chemical Society

    Cetuximab-Agâ‚‚S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells

    Get PDF
    Colorectal cancer (CRC) has a poor prognosis and urgently needs better therapeutic approaches. 5-Aminolevulinic acid (ALA) induced protoprophyrin IX (PpIX) based photodynamic therapy (PDT) is already approved in the clinic for several cancers but not yet well investigated for CRC. Currently, systemic administration of ALA offers a limited degree of tumour selectivity, except for intracranial tumours, limiting its wider use in the clinic. Combination of effective ALA-PDT with chemotherapy may provide a promising alternative approach for CRC treatment. Herein, theranostic Ag2S quantum dots (AS-2MPA) optically trackable in near-infrared (NIR), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) and loaded with ALA for PDT monotherapy or ALA/5-fluorouracil (5FU) for the combination therapy is proposed for enhanced treatment of EGFR(+) CRC. AS-2MPA-Cet endowed excellent targeting of the high EGFR expressing cells and showed a strong intracellular signal for NIR optical detection in a comparative study performed on SW480, HCT116, and HT29 cells, which are high, medium and low EGFR expressers. Targeting provided enhanced uptake of the ALA loaded nanoparticles by strong EGFR expressing cells and formation of higher levels of PpIX. Cells also differ in their efficiency to convert ALA to PpIX, and SW480 was the best, followed by HT29, while HCT116 were determined as unsuitable for ALA-PDT. The therapeutic efficacy was evaluated in 2D cell cultures and 3D spheroids of SW480 and HT29 cells using AS-2MPA with either electrostatically loaded, hydrazone or amide linked ALA to achieve different levels of pH or enzyme sensitive release. Most effective phototoxicity was observed in SW480 cells using AS-2MPA-ALA-electrostatic-Cet due enhanced uptake of the particles, fast ALA release and effective ALA-to-PpIX conversion. Targeted delivery reduced the effective ALA concentration significantly which was further reduced with codelivery of 5FU. Delivery of ALA via covalent linkage was also effective for PDT, but required longer incubation time for the release of ALA in therapeutic doses. Phototoxicity was correlated with high levels of reactive oxygen species (ROS) and apoptotic/necrotic cell death. Hence, both AS-2MPA-ALA-Cet based PDT and AS-2MPA-ALA-Cet-5FU based Chemo/PDT combination therapy coupled with strong NIR tracking of the nanoparticles demonstrate an exceptional therapeutic effect on CRC cells and an excellent potential for synergistic multistage tumour targeting therapy
    • …
    corecore