58 research outputs found

    Energy-Efficient Beamforming Design for Integrated Sensing and Communications Systems

    Full text link
    In this paper, we investigate the design of energy-efficient beamforming for an ISAC system, where the transmitted waveform is optimized for joint multi-user communication and target estimation simultaneously. We aim to maximize the system energy efficiency (EE), taking into account the constraints of a maximum transmit power budget, a minimum required signal-to-interference-plus-noise ratio (SINR) for communication, and a maximum tolerable Cramer-Rao bound (CRB) for target estimation. We first consider communication-centric EE maximization. To handle the non-convex fractional objective function, we propose an iterative quadratic-transform-Dinkelbach method, where Schur complement and semi-definite relaxation (SDR) techniques are leveraged to solve the subproblem in each iteration. For the scenarios where sensing is critical, we propose a novel performance metric for characterizing the sensing-centric EE and optimize the metric adopted in the scenario of sensing a point-like target and an extended target. To handle the nonconvexity, we employ the successive convex approximation (SCA) technique to develop an efficient algorithm for approximating the nonconvex problem as a sequence of convex ones. Furthermore, we adopt a Pareto optimization mechanism to articulate the tradeoff between the communication-centric EE and sensing-centric EE. We formulate the search of the Pareto boundary as a constrained optimization problem and propose a computationally efficient algorithm to handle it. Numerical results validate the effectiveness of our proposed algorithms compared with the baseline schemes and the obtained approximate Pareto boundary shows that there is a non-trivial tradeoff between communication-centric EE and sensing-centric EE, where the number of communication users and EE requirements have serious effects on the achievable tradeoff

    Remaining Useful Life Prediction for Two-Phase Hybrid Deteriorating Lithium-Ion Batteries Using Wiener Process

    No full text
    Owing to operating condition switching and internal degradation mechanisms, the degradation processes of some lithium-ion batteries (LIBs) exhibit non-monotone and two-phase patterns, which are composed of a linear first phase and a nonlinear second phase. The existing Gamma process and Inverse Gaussian process methods are limited to modeling the monotone degradation data. Besides, traditional single-phase nonlinear models and two-phase linear models are insufficient to describe such a degradation process effectively. Therefore, degradation modeling and remaining useful life (RUL) prediction of the hybrid deteriorating LIBs is still a compelling practical issue. In this paper, a two-phase hybrid degradation model with a linear first phase and a nonlinear second phase is formulated based on the widely used Wiener process-based model. Taking into account the random effects caused by the unit heterogeneity and the uncertainty of the degradation state at the changing point, we obtain the analytical solutions of the lifetime estimation and RUL prediction under the concept of the first passage time (FPT). In addition, to conduct model parameter identification, the expectation maximization (EM) algorithm in conjunction with a profile log-likelihood function method are utilized for offline parameter estimation. Subsequently, the Bayesian rule is adopted to conduct the online parameter updating. Finally, the numerical and practical experiments are provided for verification and show that the proposed method could achieve high estimation accuracy for the RUL prediction of the two-phase hybrid deteriorating LIBs

    A Novel Unified Data Modeling Method for Equipment Lifecycle Integrated Logistics Support

    No full text
    Integrated logistics support (ILS) is of great significance for maintaining equipment operational capability in the whole lifecycle. Numerous segments and complex product objects exist in the process of equipment ILS, which gives ILS data multi-source, heterogeneous, and multidimensional characteristics. The present ILS data cannot satisfy the demand for efficient utilization. Therefore, the unified modeling of ILS data is extremely urgent and significant. In this paper, a unified data modeling method is proposed to solve the consistent and comprehensive expression problem of ILS data. Firstly, a four-tier unified data modeling framework is constructed based on the analysis of ILS data characteristics. Secondly, the Core unified data model, Domain unified data model, and Instantiated unified data model are built successively. Then, the expressions of ILS data in the three dimensions of time, product, and activity are analyzed. Thirdly, the Lifecycle ILS unified data model is constructed, and the multidimensional information retrieval methods are discussed. Based on these, different systems in the equipment ILS process can share a set of data models and provide ILS designers with relevant data through different views. Finally, the practical ILS data models are constructed based on the developed unified data modeling software prototype, which verifies the feasibility of the proposed method

    Physical Activity Dimensions and Its Association with Risk of Diabetes in Middle and Older Aged Chinese People

    No full text
    Background: Diabetes and physical inactivity are prevalent worldwide. Risk of diabetes is known to be related with insufficient physical activity (PA), but associations with the respective dimensions of PA is unclear. Objective: To describe the patterns of physical activity among Chinese middle- and older-aged individuals and figure out their associations with diabetes risk in different dimensions. Methods: Extracting self-reported data from China Health and Retirement Longitudinal Study (CHARLS, 2015), this study included 6196 participants. Multivariate logistic regression was conducted to determine the association between diabetes risk and PA dimensions such as intensity, frequency, duration, and volume. Results: Concerning frequency, lower diabetes risk was associated with performing vigorous PA at any frequency overall. For duration, smaller odds of diabetes were observed in performing vigorous PA 2–4 h/day (OR 0.46, 95%CI 0.30 to 0.71), moderate PA ≥4 h/day (OR 0.59, 95%CI 0.42 to 0.82) and light PA ≥4 h/day (OR 0.59, 95%CI 0.41 to 0.85) overall. For volume, lower diabetes risk was associated with performing moderate-to-vigorous PA (MVPA) ≥2250 METs/week (OR 0.58, 95%CI 0.42 to 0.81) in middle-aged group (45–64 years), whereas no significant associations between MVPA and diabetes risk were found in older aged group (≥65 years). Conclusions: Our results revealed that physical inactivity is prevalent in China, with a greater proportion in the diabetes group. Lower risk of diabetes was associated with higher frequency, longer duration and longer volume of PA at higher intensity in middle-aged respondents and similar associations at lower intensity for the older adults. Additionally, further well-designed prospective studies are needed to confirm our findings

    Associations between Intensity, Frequency, Duration, and Volume of Physical Activity and the Risk of Stroke in Middle- and Older-Aged Chinese People: A Cross-Sectional Study

    No full text
    Context: Persuasive evidence has shown the inverse associations between physical activity (PA) and the risk of stroke. However, few studies have investigated the associations between different dimensions (intensity, frequency, duration, volume) of PA and the risk of stroke. Objective: To investigate the associations between different dimensions of PA and the risk of stroke in total participants and subgroups. Method: This study included 6250 individuals aged 45 years old and above from the China Health and Retirement Longitudinal Study (CHARLS). PA was divided into vigorous PA (VPA), moderate PA (MPA), and light PA (LPA), and described in different dimensions (intensity, frequency, duration, volume). Stroke was defined on the basis of self-reported diagnosis and related treatments. Binary logistic regression models were established to assess the associations between different dimensions of PA and the risk of stroke in total participants and subgroups stratified by sex. Results: Individuals taking VPA with a frequency of 3–5 d/w, duration of ≥240 min/d, volume of ≥300 min/w had lower risks of strokes in total participants (Odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.13, 0.75; OR = 0.60, 95% CI: 0.38, 0.94; OR = 0.68, 95% CI: 0.46, 0.99, respectively). However, significant associations of VPA with the risk of stroke in men were only observed in the duration of ≥240 min/d and volume of ≥300 min/w (OR = 0.53, 95% CI: 0.30, 0.93; OR = 0.61, 95% CI: 0.38, 0.99, respectively) whereas no significance in women. Compared with individuals taking no MPA, inverse significant associations between the risk of stroke and any level of frequency, duration and volume in MPA were observed in total sample (OR ranging from 0.16–0.40, all p < 0.05), whereas significant associations between the risk of stroke and MPA were found in men except the duration of 10–29 min/d and volume of 150–299 min/w (OR ranging from 0.26–0.35, all p < 0.05), and in women except the frequency of 1–2 d/w and duration of ≥240 min/d (OR ranging from 0.14–0.49, all p < 0.05). No significant associations could be observed in total participants and subgroups between LPA and the risk of stroke. Conclusion: This study revealed some significant associations between different dimensions of PA, especially MPA, and the risk of stroke. Furthermore, the difference of association was observed in the groups with different sex. Further prospective study is needed to determine deeper associations between PA and the risk of stroke

    Construction of CoP2-Mo4P3/NF Heterogeneous Interfacial Electrocatalyst for Boosting Water Splitting

    No full text
    Developing highly efficient, cost effective and durable bifunctional electrocatalyst remains a key challenge for overall water splitting. Herein, a bifunctional catalyst CoP2-Mo4P3/NF with rich heterointerfaces was successfully prepared by a two-step hydrothermal-phosphorylation method. The synergistic interaction between CoP2 and Mo4P3 heterogeneous interfaces can optimize the electronic structure of active sites, leading to the weak adsorption of H on the Mo sites and the increased redox activity of the Co site, resultantly improving the HER/OER bifunctional catalytic activity. The synthesized CoP2-Mo4P3/NF catalyst exhibits excellent electrocatalytic activity in 1.0 M KOH with low overpotentials of 77.6 and 300.3 at 100 mA cm−2 for HER and OER, respectively. Additionally, the assembled CoP2-Mo4P3/NF||CoP2-Mo4P3/NF electrolyzer delivers a current density of 100 mA cm−2 at a cell voltage of 1.59 V and remains stable for at least 370 h at 110 mA cm−2, indicating the potential application prospective in water splitting

    A Long-Term Trend Study of Tuberculosis Incidence in China, India and United States 1992–2017: A Joinpoint and Age–Period–Cohort Analysis

    No full text
    Tuberculosis (TB) is one of the major infectious diseases with the largest number of morbidity and mortality. Based on the comparison of high and low burden countries of tuberculosis in China, India and the United States, the influence of age-period-cohort on the incidence of tuberculosis in three countries from 1992 to 2017 was studied based on the Global burden of Disease Study 2017. We studied the trends using Joinpoint regression in the age-standardized incidence rate (ASIR). The regression model showed a significant decreasing behavior in China, India and the United States between 1992 and 2017. Here, we analyzed the tuberculosis incidence trends in China, India, as well as the United States and distinguished age, period and cohort effects by using age-period-cohort (APC) model. We found that the relative risks (RRs) of tuberculosis in China and India have similar trends, but the United States was found different. The period effect showed that the incidence of the three countries as a whole declines with time. The incidence of tuberculosis had increased in most age group. The older the age, the higher the risk of TB incidence. The net age effect in China and India showed a negative trend, while the cohort effect decreased from the earlier birth cohort to the recent birth cohort. Aging may lead to a continuous increase in the incidence of tuberculosis. It is related to the aging of the population and the relative decline of the immune function in the elderly. This should be timely population intervention or vaccine measures, especially for the elderly. The net cohort effect in the United States showed an unfavorable trend, mainly due to rising smoking rates and the emergence of an economic crisis. Reducing tobacco consumption can effectively reduce the incidence
    • …
    corecore