84 research outputs found

    Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol

    Get PDF
    Cu, Co and Zn modified N-doped porous carbons (CuCo/Zn@NPC) are prepared using a polymetallic homogeneous doping and self-templating method as high performance non-noble metal catalysts for the hydrogenation of furfural (FF) to furfuryl alcohol (FAL). The CuCo/Zn@NPC-600 catalyst after treatment at 600 °C shows a superior catalytic activity with nearly 100% conversion of FF and an almost 100% selectivity of FAL using H2 at 140 °C. Meanwhile in the catalytic transfer hydrogenation (CTH) using 2-propanol as a H-donor, the conversion of FF reaches 95.8% and the selectivity of FAL is 99.1%. The results show that the Zn dopant leads to 37.3 times higher yield on the CuCo/Zn@NPC-600 catalyst than that on CuCo@NPC-600, and 2.3 times higher than that on Co/Zn@NPC-600 with Cu dopants. The efficient activity of the CuCo/Zn@NPC-600 catalyst is mainly due to the highly dispersed metal nanoparticles, the advanced porous structure resulting from Zn escape from the precursor template, and the synergistic effect between Cu and Co. Furthermore, the CuCo/Zn@NPC-600 catalyst exhibits good recyclability in FF hydrogenation in four cycle tests. The advanced synthesis method using a homogeneous doping and self-templating strategy sheds light on preparing effective catalysts for hydrogenation of biomass-based compounds

    Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix

    Get PDF
    Abstract Background Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Methods Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. Results We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. Conclusions The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug and drug-delivery system development

    Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol

    Get PDF
    The employment of single-atom catalysts in the catalytic transfer hydrogenation (CTH) of furfural (FF) to furfuryl alcohol (FAL) have never been effectively explored. Herein, Ni single-atoms supported on nitrogen doped carbon (Ni-SAs/NC) catalyst is synthesized and first ever utilized in CTH of FF to FAL. Atomically dispersed Ni-N4 sites change the electron density at the metal center and exhibit specific adsorption and desorption to FF and FAL, promoting an outstanding catalytic performance with turnover frequency (TOF) of 832 h-1 and selectivity as high as 97.1 at 130 oC for 2 h. Such performance is 9-fold higher than that of supported Ni nanocatalysts. The Ni-SAs/NC catalyst also exhibits superior stability for CTH of FF and excellent catalytic activity for other α,β-unsaturated aldehydes. This work provides a new strategy of producing green chemical compounds using catalytic biomass conversion and suggests the future application of long-lasting single-atom catalysts for emerging sustainable technologies

    Application of a Diatom Transfer Function to Quantitative Paleoclimatic Reconstruction — A Case Study of Yunlong Lake, Southwest China

    Get PDF
    Although diatom records from lake sediments have been used for quantitative paleoclimatic reconstruction, their validity and sensitivity have rarely been tested rigorously. At Yunlong Lake, an alpine lake in Southwest China, we studied the seasonal succession of diatom assemblages to produce a mean surface water temperature (MSWT) transfer function. In addition, based on the spatial distribution of surface diatom assemblages with water depth, we produced a diatom-water depth (WD) transfer function. Combined with the analysis of diatom assemblages in a sediment core (YL2013-A), changes in surface water temperature and water level over the last ∼100 years were quantitatively reconstructed using the diatom-based transfer functions. Comparison with records of regional meteorology and reservoir water capacity revealed that the diatom-based lake water level reconstruction is a sensitive indicator of short-term fluctuations in precipitation, and it also reflects a long-term stepwise rise in water level caused by the impounding and large-scale extension of the reservoir. In addition, the diatom-inferred MSWT is consistent with the changes in air temperature prior to large-scale human disturbance of the site. However, after the extension of the reservoir, although the regional air temperature continued to increase, the water temperature decreased substantially. This suggests that the large increase in lake water volume in the short term led to a decrease in the average water temperature, which in turn led to the occurrence of a diatom bloom in the cold season. The results demonstrate that diatom transfer functions based on modern observations of the same lake has a high environmental sensitivity and can be used for the quantitative reconstruction of regional climate change. Overall, our findings provide a foundation for the use of lake diatom records for quantitative paleoclimatic reconstruction on various timescales

    The plasticity of mesenchymal stem cells in regulating surface HLA-I

    Get PDF
    Summary A low surface expression level of human leukocyte antigen class I(HLA-I) ensures the mesenchymal stem cells’(MSCs) escape from the allogeneic recipients’ immunological surveillance. Here, we discovered that both transcriptional and synthesis levels of HLA-I in MSCs increased continuously after IFN-γ treatment, while interestingly, their surface HLA-I expression was downregulated after reaching an HLA-I surface expression peak. Microarray data indicated the post-transcriptional process plays an important role in downregulation of surface HLA-I. Further studies identified that IFN-γ-treated MSCs accelerated HLA-I endocytosis through a Clathrin–independent Dynamin-dependent endocytosis pathway. Furthermore, the cells which have self-downregulated surface HLA-I expression elicit a weaker immune response than they previously could. Thus, uncovering the plasticity of MSCs in the regulation of HLA-I surface expression would reveal insights into the membrane-transportation events leading to the maintenance of low surface HLA-I expression, providing more evidence for selecting and optimizing low immunogenic MSCs to improve the therapeutic efficiency.Peer reviewe

    A third (booster) dose of the inactivated SARS-CoV-2 vaccine elicits immunogenicity and T follicular helper cell responses in people living with HIV

    Get PDF
    IntroductionThis study sought to explore the immunogenicity of a booster dose of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in people living with human immunodeficiency virus (HIV) and identify the factors affecting the magnitude of anti-SARS-CoV-2 antibody levels.Materials and methodsA total of 34 people living with HIV (PLWH) and 34 healthy donors (HD) were administered a booster dose of the same SARS-CoV-2 vaccine. Anti-SARS-CoV-2 antibody and immunoglobulin G (IgG) levels were measured using the SARS-CoV-2 S protein neutralizing antibody Enzyme-Linked Immunosorbent Assay (ELISA) and 2019-nCov IgG Chemiluminescent Immunoassay Microparticles, respectively. Spearman correlation analysis was used to measure the correlation between laboratory markers and neutralizing antibody and IgG levels. Peripheral blood mononuclear cells (PBMCs) were extracted from each subject using density gradient centrifugation and the numbers of memory T and T follicular helper (Tfh) cells were determined using flow cytometry.ResultsPLWH had a marked reduction in CD4 and B cell levels that was accompanied by a lower CD4/CD8 T cell ratio. However, those who received a supplementary dose of inactivated SARS-CoV-2 vaccines exhibited antibody positivity rates that were analogous to levels previously observed. The booster vaccine led to a reduction in IgG and neutralizing antibody levels and the amplitude of this decline was substantially higher in the PLWH than HD group. Correlation analyses revealed a strong correlation between neutralizing antibody levels and the count and proportion of CD4 cells. Anti-SARS-CoV-2 IgG antibody levels followed a similar trend. The expression of memory T and Tfh cells was considerably lower in the PLWH than in the HD group.DiscussionPLWH had an attenuated immune response to a third (booster) administration of an inactivated SARS-CoV-2 vaccine, as shown by lower neutralizing antibody and IgG levels. This could be attributed to the reduced responsiveness of CD4 cells, particularly memory T and cTfh subsets. CD4 and cTfh cells may serve as pivotal markers of enduring and protective antibody levels. Vaccination dose recalibration may be critical for HIV-positive individuals, particularly those with a lower proportion of CD4 and Tfh cells

    Review of solid–liquid phase change materials and their encapsulation technologies

    Get PDF
    Various types of solid–liquid phase change materials (PCMs) have been reviewed for thermal energy storage applications. The review has shown that organic solid–liquid PCMs have much more advantages and capabilities than inorganic PCMs but do possess low thermal conductivity and density as well as being flammable. Inorganic PCMs possess higher heat storage capacities and conductivities, cheaper and readily available as well as being non-flammable, but do experience supercooling and phase segregation problems during phase change process. The review has also shown that eutectic PCMs have unique advantage since their melting points can be adjusted. In addition, they have relatively high thermal conductivity and density but they possess low latent and specific heat capacities. Encapsulation technologies and shell materials have also been examined and limitations established. The morphology of particles was identified as a key influencing factor on the thermal and chemical stability and the mechanical strength of encapsulated PCMs. In general, in-situ polymerization method appears to offer the best technological approach in terms of encapsulation efficiency and structural integrity of core material. There is however the need for the development of enhancement methods and standardization of testing procedures for microencapsulated PCMs

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore