44 research outputs found
Aeromonas salmonicida Toxin AexT Has a Rho Family GTPase-Activating Protein Domainâ–ż
The N terminus of the Aeromonas salmonicida ADP-ribosylating toxin AexT displays in vitro GTPase-activating protein (GAP) activity for Rac1, CDC42, and RhoA. HeLa cells transfected with the AexT N terminus exhibit rounding and actin disordering. We propose that the Aeromonas salmonicida AexT toxin is a novel member of the growing family of bacterial RhoGAPs
Recommended from our members
Colonocyte metabolism shapes the gut microbiota
An imbalance in the colonic microbiota might underlie many human diseases, but the mechanisms that maintain homeostasis remain elusive. Recent insights suggest that colonocyte metabolism functions as a control switch, mediating a shift between homeostatic and dysbiotic communities. During homeostasis, colonocyte metabolism is directed toward oxidative phosphorylation, resulting in high epithelial oxygen consumption. The consequent epithelial hypoxia helps to maintain a microbial community dominated by obligate anaerobic bacteria, which provide benefit by converting fiber into fermentation products absorbed by the host. Conditions that alter the metabolism of the colonic epithelium increase epithelial oxygenation, thereby driving an expansion of facultative anaerobic bacteria, a hallmark of dysbiosis in the colon. Enteric pathogens subvert colonocyte metabolism to escape niche protection conferred by the gut microbiota. The reverse strategy, a metabolic reprogramming to restore colonocyte hypoxia, represents a promising new therapeutic approach for rebalancing the colonic microbiota in a broad spectrum of human diseases
Recommended from our members
Microbiota-nourishing Immunity and Its Relevance for Ulcerative Colitis
An imbalance in our microbiota may contribute to many human diseases, but the mechanistic underpinnings of dysbiosis remain poorly understood. We argue that dysbiosis is secondary to a defect in microbiota-nourishing immunity, a part of our immune system that balances the microbiota to attain colonization resistance against environmental exposure to microorganisms. We discuss this new hypothesis and its implications for ulcerative colitis, an inflammatory bowel disease of the large intestine
Recommended from our members
Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis.
Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product
Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface
The colonic microbiota exhibits cross-sectional heterogeneity, but the mechanisms that govern its spatial organization remain incompletely understood. Here we used Citrobacter rodentium, a pathogen that colonizes the colonic surface, to identify microbial traits that license growth and survival in this spatial niche. Previous work showed that during colonic crypt hyperplasia, type III secretion system (T3SS)-mediated intimate epithelial attachment provides C. rodentium with oxygen for aerobic respiration. However, we find that prior to the development of colonic crypt hyperplasia, T3SS-mediated intimate attachment is not required for aerobic respiration but for hydrogen peroxide (H2O2) respiration using cytochrome c peroxidase (Ccp). The epithelial NADPH oxidase NOX1 is the primary source of luminal H2O2 early after C. rodentium infection and is required for Ccp-dependent growth. Our results suggest that NOX1-derived H2O2 is a resource that governs bacterial growth and survival in close proximity to the mucosal surface during gut homeostasis
Respiration of Microbiota-Derived 1,2-propanediol Drives <i>Salmonella</i> Expansion during Colitis
<div><p>Intestinal inflammation caused by <i>Salmonella enterica</i> serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. <i>S</i>. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the <i>pdu</i> genes conferred a fitness advantage upon <i>S</i>. Typhimurium in mice mono-associated with <i>Bacteroides fragilis</i> or <i>Bacteroides thetaiotaomicron</i>. Collectively, our data suggest that intestinal inflammation enables <i>S</i>. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product.</p></div