111 research outputs found
Negative Hyperselection of Patients with HER2+ and RAS Wild-Type Metastatic Colorectal Cancer Receiving Dual HER2 Blockade: the PRESSING-HER2 Study
Hyperselection; Metastatic colorectal cancerHiperselección; Cáncer colorrectal metastásicoHiperselecció; Cà ncer colorectal metastà ticPurpose:
To demonstrate the negative prognostic impact of a panel of genomic alterations (PRESSING-HER2 panel) and lack of HER2 amplification by next-generation sequencing (NGS) in patients with HER2+, RAS wild-type metastatic colorectal cancer receiving dual HER2 blockade.
Experimental Design:
The PRESSING-HER2 panel of HER2 mutations/rearrangements and RTK/MAPK mutations/amplifications was assessed by NGS. HER2 amplification was confirmed by NGS if copy-number variation (CNV) was ≥ 6. With a case–control design, hypothesizing 30% and 5% PRESSING-HER2 positivity in resistant [progression-free survival (PFS) <4 months and no RECIST response] versus sensitive cohorts, respectively, 35 patients were needed per group.
Results:
PRESSING-HER2 alterations included HER2 mutations/rearrangements, EGFR amplification, and BRAF mutations and had a prevalence of 27% (9/33) and 3% (1/35) in resistant versus sensitive patients (P = 0.005) and 63% predictive accuracy. Overall, HER2 nonamplified status by NGS had 10% prevalence. Median PFS and overall survival (OS) were worse in PRESSING-HER2+ versus negative (2.2 vs. 5.3 months, P < 0.001; 5.4 vs. 14.9 months, P = 0.001) and in HER2 nonamplified versus amplified (1.6 vs. 5.2 months, P < 0.001; 7.4 vs. 12.4 months, P = 0.157). These results were confirmed in multivariable analyses [PRESSING-HER2 positivity: PFS HR = 3.06, 95% confidence interval (CI), 1.40–6.69, P = 0.005; OS HR = 2.93, 95% CI, 1.32–6.48, P = 0.007]. Combining PRESSING-HER2 and HER2 CNV increased the predictive accuracy to 75%.
Conclusions:
PRESSING-HER2 panel and HER2 nonamplified status by NGS warrant validation as potential predictive markers in this setting.This study was supported by AIRC IG 23624 (to F. Pietrantonio), and by the NIH Cancer Center Core Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center
Management of adverse events from the treatment of encorafenib plus cetuximab for patients with BRAF V600E-mutant metastatic colorectal cancer: insights from the BEACON CRC study
Adverse events; Cetuximab; EncorafenibEventos adversos; Cetuximab; EncorafenibEsdeveniments adversos; Cetuximab; EncorafenibColorectal cancer is the second leading cause of cancer deaths worldwide, with a 5-year relative survival of 14% in patients with metastatic colorectal cancer (mCRC). Patients with BRAF V600E mutations, which occur in ∼10%-15% of patients with mCRC, have a poorer prognosis compared with those with wild-type BRAF tumours. The combination of the BRAF inhibitor encorafenib with the epidermal growth factor receptor inhibitor cetuximab currently represents the only chemotherapy-free targeted therapy approved in the USA and Europe for previously treated patients with BRAF V600E-mutated mCRC. As a class, BRAF inhibitors are associated with dermatologic, gastrointestinal, and renal events, as well as pyrexia and secondary skin malignancies. Adverse event (AE) profiles of specific BRAF inhibitors vary, however, and are affected by the specific agents given in combination. In patients with mCRC, commonly reported AEs of cetuximab monotherapy include infusion reactions and dermatologic toxicities. Data from the phase III BEACON CRC study indicate that the combination of encorafenib with cetuximab has a distinct safety profile. Here we review the most frequently reported AEs that occurred with this combination in BEACON CRC and best practices for managing and mitigating AEs that require more than standard supportive care.This work was supported by Array BioPharma in collaboration with Merck KGaA Darmstadt, Germany (for sites outside of North America), ONO Pharmaceutical, Japan, and Pierre Fabre, France. Array BioPharma was acquired by Pfizer in July 2019. This work was also supported by the Cancer Center Core [grant number P30 CA 008748] to MSKCC. Medical writing/editorial support was provided by Namiko Abe, PhD, and Alyson Bexfield, PhD, of Caudex, New York, and was funded by Pfizer
Quality of life with encorafenib plus cetuximab with or without binimetinib treatment in patients with BRAF V600E-mutant metastatic colorectal cancer: patient-reported outcomes from BEACON CRC
Colorectal cancer; Encorafenib; Quality of lifeCáncer colorrectal; Encorafenib; Calidad de vidaCà ncer colorectal; Encorafenib; Qualitat de vidaBackground
In the BEACON CRC study (NCT02928224), encorafenib plus cetuximab with binimetinib {9.3 versus 5.9 months; hazard ratio (HR) [95% confidence interval (CI)]: 0.60 [0.47-0.75]} or without binimetinib [9.3 versus 5.9 months; HR (95% CI): 0.61 (0.48-0.77)] significantly improved overall survival (OS) compared with the previous standard of care (control) in patients with BRAF V600E metastatic colorectal cancer (mCRC). Quality of life (QoL) was a secondary endpoint, assessed using validated instruments.
Patients and methods
BEACON CRC was a randomized, open-label, phase III study comparing encorafenib plus cetuximab with or without binimetinib and the investigator’s choice of irinotecan plus cetuximab or FOLFIRI plus cetuximab (chemotherapy control) in patients with previously treated BRAF V600E mCRC. Patient-reported QoL assessments included the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC) and Functional Assessment of Cancer Therapy—Colorectal (FACT-C). The primary outcome for these tools was time to definitive 10% deterioration.
Results
Encorafenib plus cetuximab, both with and without binimetinib, was associated with longer median times to definitive 10% deterioration versus the control group in the EORTC Global Health Status scale [HR (95% CI): 0.65 (0.52-0.80) versus 0.61 (0.49-0.75), respectively] and the FACT-C functional well-being subscale [HR (95% CI): 0.62 (0.50-0.76) versus 0.58 (0.47-0.72), respectively]. Consistent results were observed across all subscales of the EORTC and FACT-C instruments. QoL was generally maintained during treatment for the global EORTC and FACT-C scales.
Conclusions
In addition to improving OS, encorafenib plus cetuximab with or without binimetinib delays QoL decline in previously treated patients with BRAF V600E-mutant mCRC.This study was sponsored by Array BioPharma Inc, which was acquired by Pfizer, United States; National Cancer Institute, United States in July 2019. This work was also supported by the Cancer Center Core Grant [grant number P30 CA 008748] to Memorial Sloan-Kettering Cancer Center
Phase Ib/II Study of the Efficacy and Safety of Binimetinib (MEK162) Plus Panitumumab for Mutant or Wild-Type RAS Metastatic Colorectal Cancer
RAS mutation; Binimetinib; Colorectal cancerMutació RAS; Binimetinib; Cà ncer colorectalMutación RAS; Binimetinib; Cáncer colorrectalIntroduction
Activating RAS gene mutations occur in approximately 55% of patients with metastatic colorectal cancer (mCRC) and are associated with poorer clinical outcomes due to epidermal growth factor receptor (EGFR) blockade resistance. Combined EGFR and mitogen-activated protein kinase (MEK) inhibition may extend response to EGFR inhibition and overcome acquired resistance. This phase Ib/II dose escalation trial evaluated the safety and activity of dual inhibition with binimetinib (MEK1/2 inhibitor) and panitumumab (EGFR inhibitor [EGFRi]) in patients with RAS mutant or BRAF wild type (WT)/RAS WT mCRC.
Methods
Phase Ib dose escalation started with binimetinib 45 mg twice daily plus panitumumab 6 mg/kg administered every 2 weeks. In the phase II study, patients with measurable mCRC were enrolled into 4 groups based on previous anti-EGFR monoclonal antibody therapy and RAS mutational status.
Results
No patients in the phase Ib portion (n = 10) had a response; 70% of patients had stable disease. In the phase II portion (n = 43), overall response rate (ORR, confirmed) was 2.3% with one partial response in the RAS WT group, DCR was 30.2%, and median progression-free survival was 1.8 months (95%CI, 1.6-3.3). All patients experienced ≥1 adverse event, with the most common being diarrhea (71.7%), vomiting (52.8%), nausea (50.9%), fatigue (49.1%), dermatitis acneiform (43.4%), and rash (41.5%). Most patients required treatment interruption or dose reduction due to difficulties tolerating treatment.
Conclusions
The combination of binimetinib and panitumumab had substantial toxicity and limited clinical activity for patients with mutant or WT RAS mCRC, independent of EGFRi treatment history (Trial registration: NCT01927341).This study was sponsored by Array Biopharma in collaboration with Novartis. Array Biopharma was acquired by Pfizer in July 2019. Medical writing and editorial assistance were provided by Namiko Abe of Caudex and were funded by Pfizer. Research was supported by the National Institutes of Health Cancer Center Core Grant P30 CA 008748
Sotorasib With Panitumumab in Chemotherapy-Refractory KRAS G12C-Mutated Colorectal Cancer: A Phase 1b Trial
The current third-line (and beyond) treatment options for RAS-mutant metastatic colorectal cancer have yielded limited efficacy. At the time of study start, the combination of sotorasib, a KRAS (Kirsten rat sarcoma viral oncogene homolog)-G12C inhibitor, and panitumumab, an epidermal growth factor receptor (EGFR) inhibitor, was hypothesized to overcome treatment-induced resistance. This phase 1b substudy of the CodeBreaK 101 master protocol evaluated sotorasib plus panitumumab in patients with chemotherapy-refractory KRA
Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer
In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.R35 GM118173 - NIGMS NIH HHS; U01 TR002625 - NCATS NIH HHS; P30 CA008748 - NCI NIH HHS; FC010144 - Cancer Research UK; FC010144 - Medical Research Council; FC010144 - Wellcome TrustPublished versio
Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy
Purpose: Evaluate response of mismatch repair deficient (dMMR) rectal cancer to neoadjuvant chemotherapy. Experimental Design: dMMR rectal tumors at Memorial Sloan Kettering were retrospectively reviewed for characteristics, treatment, and outcomes. Fifty dMMR rectal cancer patients were identified by immunohistochemistry and/or microsatellite instability analysis, with initial treatment response compared to a matched pMMR rectal cancer cohort. Germline and somatic mutation analyses were evaluated. Patient-derived dMMR rectal tumoroids were assessed for chemotherapy sensitivity. Results: Of 21 patients receiving neoadjuvant chemotherapy (fluorouracil/oxaliplatin), 6 (29%) had progression of disease. In comparison, no progression was noted in 63 pMMR rectal tumors (P = 0.0001). Rectal cancer dMMR tumoroids reflected this resistance to chemotherapy. No genomic predictors of chemotherapy response were identified. Of 16 patients receiving chemoradiation, 13 (93%) experienced tumor downstaging; one patient had stable disease, comparable to 48 pMMR rectal cancers. Of 13 patients undergoing surgery, 12 (92%) had early-stage disease. Forty-two (84%) of the 50 patients tested positive for Lynch syndrome (LS) with enrichment of germline MSH2 and MSH6 mutations when compared to 193 LS-associated colon cancer patients (MSH2, 57% vs 36%; MSH6, 17% vs 9%; P < .003). Conclusions: Over one-fourth of dMMR rectal tumors treated with neoadjuvant chemotherapy exhibited disease progression. Conversely, dMMR rectal tumors were sensitive to chemoradiation. MMR status should be performed upfront in all locally advanced rectal tumors with careful monitoring for response on neoadjuvant chemotherapy and genetic testing for LS in dMMR rectal cancer patients
Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E–Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study
Cà ncer colorectal; Eficà cia i seguretat; Encorafenib més cetuximabCáncer colorrectal; Eficacia y seguridad; Encorafenib más cetuximabColorectal Cancer; Efficacy and safety; Encorafenib plus cetuximabPURPOSE
BEACON CRC evaluated encorafenib plus cetuximab with or without binimetinib versus investigators' choice of irinotecan or FOLFIRI plus cetuximab in patients with BRAFV600E–mutant metastatic colorectal cancer (mCRC), after progression on 1-2 prior regimens. In the previously reported primary analysis, encorafenib, binimetinib plus cetuximab (ENCO/BINI/CETUX; triplet) and encorafenib plus cetuximab (ENCO/CETUX; doublet) regimens improved overall survival (OS) and objective response rate (ORR; by blinded central review) versus standard of care. The purpose of this analysis was to report updated efficacy and safety data.
METHODS
In this open-label, phase III trial, 665 patients with BRAF V600E–mutant mCRC were randomly assigned 1:1:1 to receive triplet, doublet, or control. Primary end points were OS and independently reviewed ORR comparing triplet to control. OS for doublet versus control was a key secondary end point. Updated analyses include 6 months of additional follow-up and ORR for all randomized patients.
RESULTS
Patients received triplet (n = 224), doublet (n = 220), or control (n = 221). Median OS was 9.3 months (95% CI, 8.2 to 10.8) for triplet and 5.9 months (95% CI, 5.1 to 7.1) for control (hazard ratio [HR], 0.60 [95% CI, 0.47 to 0.75]). Median OS for doublet was 9.3 months (95% CI, 8.0 to 11.3) (HR v control, 0.61 [95% CI, 0.48 to 0.77]). Confirmed ORR was 26.8% (95% CI, 21.1% to 33.1%) for triplet, 19.5% (95% CI, 14.5% to 25.4%) for doublet, and 1.8% (95% CI, 0.5% to 4.6%) for control. Adverse events were consistent with the prior primary analysis, with grade ≥ 3 adverse events in 65.8%, 57.4%, and 64.2% for triplet, doublet, and control, respectively.
CONCLUSION
In the BEACON CRC study, encorafenib plus cetuximab improved OS, ORR, and progression-free survival in previously treated patients in the metastatic setting compared with standard chemotherapy. Based on the primary and updated analyses, encorafenib plus cetuximab is a new standard care regimen for previously treated patients with BRAF V600E mCRC
Early TP53 Alterations Shape Gastric and Esophageal Cancer Development
Gastric and esophageal (GE) adenocarcinomas are the third and sixth most common causes of cancer-related mortality worldwide, accounting for greater than 1.25 million annual deaths. Despite the advancements in the multi-disciplinary treatment approaches, the prognosis for patients with GE adenocarcinomas remains poor, with a 5-year survival of 32% and 19%, respectively, mainly due to the late-stage diagnosis and aggressive nature of these cancers. Premalignant lesions characterized by atypical glandular proliferation, with neoplastic cells confined to the basement membrane, often precede malignant disease. We now appreciate that premalignant lesions also carry cancer-associated mutations, enabling disease progression in the right environmental context. A better understanding of the premalignant-to-malignant transition can help us diagnose, prevent, and treat GE adenocarcinoma. Here, we discuss the evidence suggesting that alterations in TP53 occur early in GE adenocarcinoma evolution, are selected for under environmental stressors, are responsible for shaping the genomic mechanisms for pathway dysregulation in cancer progression, and lead to potential vulnerabilities that can be exploited by a specific class of targeted therapy
- …