7 research outputs found
Differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells
BRCA1 and 53BP1 play decisive roles in the choice of DNA double-strand break repair mechanisms. BRCA1 promotes DNA end resection and homologous recombination (HR) during S/G(2) phases of the cell cycle, while 53BP1 inhibits end resection and facilitates non-homologous end-joining (NHEJ), primarily during G(1). This competitive relationship is critical for genome integrity during cell division. However, their relationship in the many cells in our body that are not cycling is unknown. We discovered profound differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells. Cellular growth arrest results in transcriptional downregulation of BRCA1 and activation of cathepsin-L (CTSL)-mediated degradation of 53BP1. Accordingly, growth-arrested cells do not form BRCA1 or 53BP1 ionizing radiation-induced foci (IRIF). Interestingly, cell cycle re-entry reverts this scenario, with upregulation of BRCA1, downregulation of CTSL, stabilization of 53BP1, and 53BP1 IRIF formation throughout the cycle, indicating that BRCA1 and 53BP1 are important in replicating cells and dispensable in non-cycling cells. We show that CTSL-mediated degradation of 53BP1, previously associated with aggressive breast cancers, is an endogenous mechanism of non-cycling cells to balance NHEJ (53BP1) and HR (BRCA1). Breast cancer cells exploit this mechanism to ensure genome stability and viability, providing an opportunity for targeted therapy
BRCA1 loss activates cathepsin L–mediated degradation of 53BP1 in breast cancer cells
Loss of 53BP1 rescues BRCA1 deficiency and is associated with BRCA1-deficient and triple-negative breast cancers (TNBC) and with resistance to genotoxic drugs. The mechanisms responsible for decreased 53BP1 transcript and protein levels in tumors remain unknown. Here, we demonstrate that BRCA1 loss activates cathepsin L (CTSL)–mediated degradation of 53BP1. Activation of this pathway rescued homologous recombination repair and allowed BRCA1-deficient cells to bypass growth arrest. Importantly, depletion or inhibition of CTSL with vitamin D or specific inhibitors stabilized 53BP1 and increased genomic instability in response to radiation and poly(adenosine diphosphate–ribose) polymerase inhibitors, compromising proliferation. Analysis of human breast tumors identified nuclear CTSL as a positive biomarker for TNBC, which correlated inversely with 53BP1. Importantly, nuclear levels of CTSL, vitamin D receptor, and 53BP1 emerged as a novel triple biomarker signature for stratification of patients with BRCA1-mutated tumors and TNBC, with potential predictive value for drug response. We identify here a novel pathway with prospective relevance for diagnosis and customization of breast cancer therapy
Selective Release of MicroRNA Species from Normal and Malignant Mammary Epithelial Cells
MicroRNAs (miRNAs) in body fluids are candidate diagnostics for a variety of conditions and diseases, including breast cancer. One premise for using extracellular miRNAs to diagnose disease is the notion that the abundance of the miRNAs in body fluids reflects their abundance in the abnormal cells causing the disease. As a result, the search for such diagnostics in body fluids has focused on miRNAs that are abundant in the cells of origin. Here we report that released miRNAs do not necessarily reflect the abundance of miRNA in the cell of origin. We find that release of miRNAs from cells into blood, milk and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. In particular, the bulk of miR-451 and miR-1246 produced by malignant mammary epithelial cells was released, but the majority of these miRNAs produced by non-malignant mammary epithelial cells was retained. Our findings suggest the existence of a cellular selection mechanism for miRNA release and indicate that the extracellular and cellular miRNA profiles differ. This selective release of miRNAs is an important consideration for the identification of circulating miRNAs as biomarkers of disease