10,347 research outputs found
Tuberculosis vaccine: pipeline approaches and future prospective
Tuberculosis (TB), despite anti-mycobacterial therapies and vaccine, is a deadly infectious disease with about 12 million incident cases worldwide. Existing Bacillus Calmette-Guérin (BCG) vaccine is unquestionably inexpensive, safe and effective against severe forms of childhood TB but appears to be limited in effectiveness against adult pulmonary disease in endemic areas. Genetic variation in the population is the major obstruction inhibiting validation of biomarkers for protective human immunity against TB. Since current TB cases are presenting new challenges with threats of HIV co-infection therefore various attempts at a global platform are being made to develop a new modified vaccine against it. Consequently, Modified Vaccinia Ankara virus (MVA) vectored MPT64 & Ag85A delivery and polyvalent DNA vaccine, expressing an ESAT6–Ag85B fusion protein etc. are preclinically tested for boosted immune effects. However, better vaccine approaches still need to be developed against M. tuberculosis which can be unbeaten in most infected areas
Superconductivity at 5.2 K in ZrTe3 polycrystals and the effect of Cu, Ag intercalation
We report the occurrence of superconductivity in polycrystalline samples of
ZrTe3 at 5.2 K temperature at ambient pressure. The superconducting state
coexists with the charge density wave (CDW) phase, which sets in at 63K. The
intercalation of Cu or Ag, does not have any bearing on the superconducting
transition temperature but suppresses the CDW state. The feature of CDW anomaly
in these compounds is clearly seen in the DC magnetization data. Resistivity
data is analysed to estimate the relative loss of carriers and reduction in the
nested Fermi surface area upon CDW formation in the ZrTe3 and the intercalated
compounds.Comment: 5 pages, 8 figure
Accelerating dark energy models in bianchi Type-V space-time
Some new exact solutions of Einstein's field equations in a spatially
homogeneous and anisotropic Bianchi type-V space-time with minimally
interaction of perfect fluid and dark energy components have been obtained. To
prevail the deterministic solution we choose the scale factor , which yields a time dependent deceleration parameter (DP),
representing a model which generates a transition of the universe from the
early decelerating phase to the recent accelerating phase. We find that for , the quintessence model is reproducible with present and expected
future evolution of the universe. The other models (for ), we observe
the phantom scenario. The quintessence as well as phantom models approach to
isotropy at late time. For different values of , we can generate a class of
physically viable DE models. The cosmic jerk parameter in our descended model
is also found to be in good concordance with the recent data of astrophysical
observations under appropriate condition. The physical and geometric properties
of spatially homogeneous and anisotropic cosmological models are discussed.Comment: 12 pages, 6 figure
Thermoelectric response of FeTeSe: evidence for strong correlation and low carrier density
We present a study of the Seebeck and Nernst coefficients of
FeTeSe extended up to 28 T. The large magnitude of the
Seebeck coefficient in the optimally doped sample tracks a remarkably low
normalized Fermi temperature, which, like other correlated superconductors, is
only one order of magnitude larger than T. We combine our data with other
experimentally measured coefficients of the system to extract a set of
self-consistent parameters, which identify FeTeSe as a
low-density correlated superconductor barely in the clean limit. The system is
subject to strong superconducting fluctuations with a sizeable vortex Nernst
signal in a wide temperature window.Comment: 4 pages including 4 figure
- …