50 research outputs found

    Bioeconomic Model of Rainbow Trout (\u3cem\u3eOncorhynchus mykiss\u3c/em\u3e) and Humpback Chub (\u3cem\u3eGila cypha\u3c/em\u3e) Management in the Grand Canyon

    Get PDF
    The Colorado River, from Glen Canyon Dam (GCD) to the Little Colorado River (LCR) confluence, includes both non-native Rainbow Trout (Oncorhynchus mykiss) and endangered native Humpback Chub (Gila cypha). While both Rainbow Trout and Humpback Chub are valued fish species in this system, Rainbow Trout can have a negative effect on Humpback Chub survival. We developed a bioeconomic model to determine management actions that minimize the costs of controlling Rainbow Trout abundance subject to achieving Humpback Chub population goals. The model is compartmentalized into population and management components. The population component characterizes the stylized dynamics of Rainbow Trout and Humpback Chub from GCD to the LCR confluence within the Colorado River. The management component of the model identifies Rainbow Trout mechanical removal strategies that achieve average annual juvenile Humpback Chub survival targets while minimizing management costs. This research is an interdisciplinary effort combining biological models and economic methods to address federal, state and tribal stakeholder resource goals related to Rainbow Trout and Humpback Chub management in this complex social-ecological system

    Remarkable Response of Native Fishes to Invasive Trout Suppression Varies With Trout Density, Temperature, and Annual Hydrology

    Get PDF
    Recovery of imperiled fishes can be achieved through suppression of invasives, but outcomes may vary with environmental conditions. We studied the response of imperiled desert fishes to an invasive brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) suppression program in a Colorado River tributary, with natural flow and longitudinal variation in thermal characteristics. We investigated trends in fish populations related to suppression and tested hypotheses about the impacts of salmonid densities, hydrologic variation, and spatial–thermal gradients on the distribution and abundance of native fish species using zero-inflated generalized linear mixed effects models. Between 2012 and 2018, salmonids declined 89%, and native fishes increased dramatically (∼480%) once trout suppression surpassed ∼60%. Temperature and trout density were consistently retained in the top models predicting the abundance and distribution of native fishes. The greatest increases occurred in warmer reaches and in years with spring flooding. Surprisingly, given the evolution of native fishes in disturbance-prone systems, intense, monsoon-driven flooding limited native fish recruitment. Applied concertedly, invasive species suppression and efforts to mimic natural flow and thermal regimes may allow rapid and widespread native fish recovery

    Exploring Metapopulation-Scale Suppression Alternatives for a Global Invader in a River Network Experiencing Climate Change

    Get PDF
    Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially-explicit metapopulation viability model to explore suppression strategies for ecologically-damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary within Grand Canyon National Park. Our goals were to: 1) estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation, 2) quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and 3) estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. We included scenarios targeting different life-stages with spatially-varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life-stages; subpopulations were most sensitive to age-0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was triple compared to a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was only achieved by re-focusing and increasing suppression. Our modeling approach improved our understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies, and ultimately, maintenance of populations of endemic fishes

    Biophysical and Socioeconomic Factors Associated with Forest Transitions at Multiple Spatial and Temporal Scales

    Get PDF
    Forest transitions (FT) occur when socioeconomic development leads to a shift from net deforestation to reforestation; these dynamics have been observed in multiple countries across the globe, including the island of Puerto Rico in the Caribbean. Starting in the 1950s, Puerto Rico transitioned from an agrarian to a manufacturing and service economy reliant on food imports, leading to extensive reforestation. In recent years, however, net reforestation has leveled off. Here we examine the drivers of forest transition in Puerto Rico from 1977 to 2000 at two subnational, nested spatial scales (municipality and barrio) and over two time periods (1977-1991 and 1991-2000). This study builds on previous work by considering the social and biophysical factors that influence both reforestation and deforestation at multiple spatial and temporal scales. By doing so within one analysis, this study offers a comprehensive understanding of the relative importance of various social and biophysical factors for forest transitions and the scales at which they are manifest. Biophysical factors considered in these analyses included slope, soil quality, and land-cover in the surrounding landscape. We also considered per capita income, population density, and the extent of protected areas as potential factors associated with forest change. Our results show that, in the 1977-1991 period, biophysical factors that exhibit variation at municipality scales (~100 km²) were more important predictors of forest change than socioeconomic factors. In this period, forest dynamics were driven primarily by abandonment of less productive, steep agricultural land in the western, central part of the island. These factors had less predictive power at the smaller barrio scale (~10 km²) relative to the larger municipality scale during this time period. The relative importance of socioeconomic variables for deforestation, however, increased over time as development pressures on available land increased. From 1991-2000, changes in forest cover reflected influences from multiple factors, including increasing population densities, land development pressure from suburbanization, and the presence of protected areas. In contrast to the 1977-1991 period, drivers of deforestation and reforestation over this second interval were similar for the two spatial scales of analyses. Generally, our results suggest that although broader socioeconomic changes in a given region may drive the demand for land, biophysical factors ultimately mediate where development occurs. Although economic development may initially result in reforestation due to rural to urban migration and the abandonment of agricultural lands, increased economic development may lead to deforestation through increased suburbanization pressures

    Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics

    Get PDF
    The increasing availability of high-frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs

    The metabolic regimes of 356 rivers in the United States

    Get PDF
    A national-scale quantification of metabolic energy flow in streams and rivers can improve understanding of the temporal dynamics of in-stream activity, links between energy cycling and ecosystem services, and the effects of human activities on aquatic metabolism. The two dominant terms in aquatic metabolism, gross primary production (GPP) and aerobic respiration (ER), have recently become practical to estimate for many sites due to improved modeling approaches and the availability of requisite model inputs in public datasets. We assembled inputs from the U.S. Geological Survey and National Aeronautics and Space Administration for October 2007 to January 2017. We then ran models to estimate daily GPP, ER, and the gas exchange rate coefficient for 356 streams and rivers across the continental United States. We also gathered potential explanatory variables and spatial information for cross-referencing this dataset with other datasets of watershed characteristics. This dataset offers a first national assessment of many-day time series of metabolic rates for up to 9 years per site, with a total of 490,907 site-days of estimates.We thank Jill Baron and the USGS Powell Center for financial support for this collaborative effort (Powell Center Working Group title: "Continental-scale overview of stream primary productivity, its links to water quality, and consequences for aquatic carbon biogeochemistry"). Additional financial support came from the USGS NAWQA program and Office of Water Information. NSF grants DEB-1146283 and EF1442501 partially supported ROH. A post-doctoral grant from the Basque Government partially supported MA. NAG was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Leah Colasuonno provided expert logistical support of our working group meetings. The developers of USGS ScienceBase were very helpful both in hosting this dataset and in responding to our requests. Randy Hunt and Mike Fienen of the USGS Wisconsin Modeling Center graciously provided access to their HTCondor cluster. Mike Vlah provided detailed and insightful reviews of the data and metadata

    Range-Wide Declines of Northern Spotted Owl Populations in the Pacific Northwest: A Meta-Analysis

    Get PDF
    The northern spotted owl (Strix occidentalis caurina) inhabits older coniferous forests in the Pacific Northwest and has been at the center of forest management issues in this region. The immediate threats to this federally listed species include habitat loss and competition with barred owls (Strix varia), which invaded from eastern North America. We conducted a prospective meta-analysis to assess population trends and factors affecting those trends in northern spotted owls using 26 years of survey and capture-recapture data from 11 study areas across the owls\u27 geographic range to analyze demographic traits, rates of population change, and occupancy parameters for spotted owl territories. We found that northern spotted owl populations experienced significant declines of 6–9% annually on 6 study areas and 2–5% annually on 5 other study areas. Annual declines translated to ≤35% of the populations remaining on 7 study areas since 1995. Barred owl presence on spotted owl territories was the primary factor negatively affecting apparent survival, recruitment, and ultimately, rates of population change. Analysis of spotted and barred owl detections in an occupancy framework corroborated the capture-recapture analyses with barred owl presence increasing territorial extinction and decreasing territorial colonization of spotted owls. While landscape habitat components reduced the effect of barred owls on these rates of decline, they did not reverse the negative trend. Our analyses indicated that northern spotted owl populations potentially face extirpation if the negative effects of barred owls are not ameliorated while maintaining northern spotted owl habitat across their range

    The past and future roles of competition and habitat in the range-wide occupancy dynamics of Northern Spotted Owls

    Get PDF
    Slow ecological processes challenge conservation. Short-term variability can obscure the importance of slower processes that may ultimately determine the state of a system. Furthermore, management actions with slow responses can be hard to justify. One response to slow processes is to explicitly concentrate analysis on state dynamics. Here, we focus on identifying drivers of Northern Spotted Owl (Strix occidentalis caurina) territorial occupancy dynamics across 11 study areas spanning their geographic range and forecasting response to potential management actions. Competition with Barred Owls (Strix varia) has increased Spotted Owl territory extinction probabilities across all study areas and driven recent declines in Spotted Owl populations. Without management intervention, the Northern Spotted Owl subspecies will be extirpated from parts of its current range within decades. In the short term, Barred Owl removal can be effective. Over longer time spans, however, maintaining or improving habitat conditions can help promote the persistence of northern spotted owl populations. In most study areas, habitat effects on expected Northern Spotted Owl territorial occupancy are actually greater than the effects of competition from Barred Owls. This study suggests how intensive management actions (removal of a competitor) with rapid results can complement a slower management action (i.e., promoting forest succession)

    Light and flow regimes regulate the metabolism of rivers

    Get PDF
    Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.We thank Ted Stets, Jordan Read, Tom Battin, Sophia Bonjour, Marina Palta, and members of the Duke River Center for their help in developing these ideas. This work was supported by grants from the NSF 1442439 (to E.S.B. and J.W.H.), 1834679 (to R.O.H.), 1442451 (to R.O.H.), 2019528 (to R.O.H. and J.R.B.), 1442140 (to M.C.), 1442451 (to A.M.H.), 1442467 (to E.H.S.), 1442522 (to N.B.G.), 1624807 (to N.B.G.), and US Geological Survey funding for the working group was supported by the John Wesley Power Center for Analysis and Synthesis. Phil Savoy contributed as a postdoc- toral associate at Duke University and as a postdoctoral associate (contractor) at the US Geological Survey

    Invader removal triggers competitive release in a threatened avian predator

    Get PDF
    Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species
    corecore