2 research outputs found

    Effects of Climate on Scorpion Diversity in Arid Ecosystems of the Sahara Desert of Algeria

    No full text
    In desert ecosystems, arthropods such as scorpions are understudied, and sufficient information is still lacking regarding their biodiversity. Specimen collection was carried out over 24 months (2016–2017). This study assessed the phenology, abundance, richness and diversity of scorpion species in arid ecosystems of the Sahara desert of Algeria (Ghardaïa). It examined the potential influence of climate parameters (precipitation, temperature and wind) on activity density, diversity and the phenological distribution of the species among seasons. We identified eight Buthidae species: Androctonus aeneas, Androctonus amoreuxi, Androctonus australis, Buthacus samiae, Buthacus spinatus, Buthacus elmenia, Buthus saharicus and Lissothus chaambi. Androctonus amoreuxi and Androctonus australis were the most abundant and omnipresent species, comprising 54.41% and 33.82% of all species found, respectively. Shannon’s index and the evenness index demonstrated a very poor diversity of scorpions in this region and a poor balance between the number of sampled species. Seasonal variation and climate parameters, i.e., temperature and wind, influenced the number, distribution, and the diversity of scorpions. The number of species found in Ghardaïa Province represent more than 20% of the scorpion species reported in Algeria

    Active-matrix digital microfluidics design for field programmable high-throughput digitalized liquid handling

    No full text
    Summary: Digital liquid sample handling is an enabling tool for cutting-edge life-sciences research. We present here an active-matrix thin-film transistor (TFT) based digital microfluidics system, referred to as Field Programmable Droplet Array (FPDA). The system contains 256 × 256 pixels in an active area of 10.65 cm2, which can manipulate thousands of addressable liquid droplets simultaneously. By leveraging a novel TFT device and circuits design solution, we manage to programmatically manipulate droplets at single-pixel level. The minimum achievable droplet volume is around 0.5 nL, which is two orders of magnitude smaller than the smallest droplet ever reported on active-matrix digital microfluidics. The movement of droplets can be either pre-programmed or controlled in real-time. The FPDA system shows great potential of the ubiquitous thin-film electronics technology in digital liquid handling. These efforts will make it possible to create a true programmable lab-on-a-chip device to enable great advances in life science research
    corecore