50 research outputs found
Spin Squeezing via One-Axis Twisting with Coherent Light
We propose a new method of spin squeezing of atomic spin, based on the
interactions between atoms and off-resonant light which are known as
paramagnetic Faraday rotation and fictitious magnetic field of light. Since the
projection process, squeezed light, or special interactions among the atoms are
not required in this method, it can be widely applied to many systems. The
attainable range of the squeezing parameter is S^{-2/5}, where S is the total
spin, which is limited by additional fluctuations imposed by coherent light and
the spherical nature of the spin distribution.Comment: 4 pages,6 figure
Noise spectroscopy of optical microcavity
The intensity noise spectrum of the light passed through an optical
microcavity is calculated with allowance for thermal fluctuations of its
thickness. The spectrum thus obtained reveals a peak at the frequency of
acoustic mode localized inside the microcavity and depends on the size of the
illuminated area. The estimates of the noise magnitude show that it can be
detected using the up-to-date noise spectroscopy technique.Comment: 10 pages, 1 figur
Paramagnetic Faraday rotation with spin-polarized ytterbium atoms
We report observation of the paramagnetic Faraday rotation of spin-polarized
ytterbium (Yb) atoms. As the atomic samples, we used an atomic beam, released
atoms from a magneto-optical trap (MOT), and trapped atoms in a
far-off-resonant trap (FORT). Since Yb is diamagnetic and includes a spin-1/2
isotope, it is an ideal sample for the spin physics, such as quantum
non-demolition measurement of spin (spin QND), for example. From the results of
the rotation angle, we confirmed that the atoms were almost perfectly
polarized.Comment: 8 pages, 20 figure
Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments
We attempt to provide physical interpretations of light-induced desorption
phenomena that have recently been observed for alkali atoms on glass surfaces
of alkali vapor cells used in atomic physics experiments. We find that the
observed desorption phenomena are closely related to recent studies in surface
science, and can probably be understood in the context of these results. If
classified in terms of the photon-energy dependence, the coverage and the
bonding state of the alkali adsorbates, the phenomena fall into two categories:
It appears very likely that the neutralization of isolated ionic adsorbates by
photo-excited electron transfer from the substrate is the origin of the
desorption induced by ultraviolet light in ultrahigh vacuum cells. The
desorption observed in low temperature cells, on the other hand, which is
resonantly dependent on photon energy in the visible light range, is quite
similar to light-induced desorption stimulated by localized electronic
excitation on metallic aggregates. More detailed studies of light-induced
desorption events from surfaces well characterized with respect to alkali
coverage-dependent ionicity and aggregate morphology appear highly desirable
for the development of more efficient alkali atom sources suitable to improve a
variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of
Surface Science and Nanotechnology at
http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl
Chaos and Period-Doubling Bifurcations in a Simple Acoustic System
Chaotic oscillations due to delay-induced instabilities are easily seen with a simple and familiar acoustic system. The measured bifurcation diagram to chaos, which is very different from that for a one-dimensional map model, is compared with numerical results. The bifurcation structure is dominated by the ratio of the response time to the delay time of the system
Comment on ââObservation of Berryâs topological phase by use of an optical fiberââ
A Comment on the Letter by Akira Tomita and Raymond Y. Chiao, Phys. Rev. Lett. 57, 937 (1986)
Optical Tristability
It is predicted with use of a simplified model that a Fabry-Perot cavity filled with atoms with Zeeman sublevels in the ground state should exhibit optical tristability via optical pumping. For linearly polarized incident light, three stable states appear in the polarization of the transmitted light; Ï+ dominant, Ï- dominant, and linear polarizations. This optical tristability is discussed in the context of a butterfly catastrophe