1,034 research outputs found
有機イオン性薬物の吸収・排泄型トランスポーター群の分子生物学的機能解析
取得学位:博士(薬学),学位授与番号:博甲第268号,学位授与年月日:平成10年9月30日,学位授与年:199
Effect of self-ion irradiation on hardening and microstructure of tungsten
AbstractThe irradiation hardening and microstructures of pure W and W–3%Re for up to 5.0 dpa by self-ion irradiation were investigated in this work. The ion irradiation was conducted using 18 MeV W6+ at 500 and 800°C. A focused ion beam followed by electro-polishing was used to make thin foil specimens for transmission electron microscope observations. Dislocation loops were observed in all the irradiated samples. Voids were observed in all of the specimens except the W–3%Re irradiated to 0.2 dpa. The hardness was measured by using nanoindentation. The irradiation hardening was saturated at 1.0 dpa for pure W. In the case of W–3%Re, the irradiation hardening showed a peak at 1.0 dpa. The correlation between the microstructure and hardening was investigated
Development of multi-channel electron spectrometer
Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, 81(10), 10E535, 2010 and may be found at http://dx.doi.org/10.1063/1.348510
Recommended from our members
Epigenetic memory in induced pluripotent stem cells.
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an 'epigenetic memory' of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment
- …