999 research outputs found

    Angular constraint on light-trapping absorption enhancement in solar cells

    Full text link
    Light trapping for solar cells can reduce production cost and improve energy conversion efficiency. Understanding some of the basic theoretical constraints on light trapping is therefore of fundamental importance. Here, we develop a general angular constraint on the absorption enhancement in light trapping. We show that there is an upper limit for the angular integration of absorption enhancement factors. This limit is determined by the number of accessible resonances supported by an absorber

    Fabrication and Characterization of Electrostatic Quantum Dots in a Si/SiGe 2D Electron Gas, Including an Integrated Read-out Channel

    Full text link
    A new fabrication technique is used to produce quantum dots with read-out channels in silicon/silicon-germanium two-dimensional electron gases. The technique utilizes Schottky gates, placed on the sides of a shallow etched quantum dot, to control the electronic transport process. An adjacent quantum point contact gate is integrated to the side gates to define a read-out channel and thus allow for noninvasive detection of the electronic occupation of the quantum dot. Reproducible and stable Coulomb oscillations and the corresponding jumps in the read-out channel resistance are observed at low temperatures. The fabricated dot combined with the read-out channel represent a step towards the spin-based quantum bit in Si/SiGe heterostructures.Comment: 3 pages, 4 fig

    Lithographic band gap tuning in photonic band gap crystals

    Get PDF
    We describe the lithographic control over the spectral response of three-dimensional photonic crystals. By precise microfabrication of the geometry using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have shifted the conduction band of crystals within the near-infrared. Such microfabrication has enabled us to reproducibly define photonic crystals with lattice parameters ranging from 650 to 730 nm. In GaAs semiconductor wafers, these can serve as high-reflectivity (> 95%) mirrors. Here, we show the procedure used to generate these photonic crystals and describe the geometry dependence of their spectral response

    Sputtered Gold as an Effective Schottky Gate for Strained Si/SiGe Nanostructures

    Full text link
    Metallization of Schottky surface gates by sputtering Au on strained Si/SiGe heterojunctions enables the depletion of the two dimensional electron gas (2DEG) at a relatively small voltage while maintaining an extremely low level of leakage current. A fabrication process has been developed to enable the formation of sub-micron Au electrodes sputtered onto Si/SiGe without the need of a wetting layer.Comment: 3 pages, 3 figure

    The Scattering Theory of Oscillator Defects in an Optical Fiber

    Full text link
    We examine harmonic oscillator defects coupled to a photon field in the environs of an optical fiber. Using techniques borrowed or extended from the theory of two dimensional quantum fields with boundaries and defects, we are able to compute exactly a number of interesting quantities. We calculate the scattering S-matrices (i.e. the reflection and transmission amplitudes) of the photons off a single defect. We determine using techniques derived from thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the interacting photon-defect system. And we compute several correlators of physical interest. We find the photon occupancy at finite temperature, the spontaneous emission spectrum from the decay of an excited state, and the correlation functions of the defect degrees of freedom. In an extension of the single defect theory, we find the photonic band structure that arises from a periodic array of harmonic oscillators. In another extension, we examine a continuous array of defects and exactly derive its dispersion relation. With some differences, the spectrum is similar to that found for EM wave propagation in covalent crystals. We then add to this continuum theory isolated defects, so as to obtain a more realistic model of defects embedded in a frequency dependent dielectric medium. We do this both with a single isolated defect and with an array of isolated defects, and so compute how the S-matrices and the band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure

    30% external quantum efficiency from surface textured, thin-film light-emitting diodes

    Get PDF
    There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using "natural lithography," the light ray dynamics becomes chaotic, and the optical phase-space distribution becomes "ergodic," allowing even more of the light to find the escape cone. We have demonstrated 30% external efficiency in GaAs LEDs employing these principles

    Inverse scattering of 2d photonic structures by layer-stripping

    Full text link
    Design and reconstruction of 2d and 3d photonic structures are usually carried out by forward simulations combined with optimization or intuition. Reconstruction by means of layer-stripping has been applied in seismic processing as well as in design and characterization of 1d photonic structures such as fiber Bragg gratings. Layer-stripping is based on causality, where the earliest scattered light is used to recover the structure layer-by-layer. Our set-up is a 2d layered nonmagnetic structure probed by plane polarized harmonic waves entering normal to the layers. It is assumed that the dielectric permittivity in each layer only varies orthogonal to the polarization. Based on obtained reflectance data covering a suitable frequency interval, time-localized pulse data are synthesized and applied to reconstruct the refractive index profile in the leftmost layer by identifying the local, time-domain Fresnel reflection at each point. Once the first layer is known, its impact on the reflectance data is stripped off, and the procedure repeated for the next layer. Through numerical simulations it will be demonstrated that it is possible to reconstruct structures consisting of several layers. The impact of evanescent modes and limited bandwidth is discussed

    Threshold Error Penalty for Fault Tolerant Computation with Nearest Neighbour Communication

    Full text link
    The error threshold for fault tolerant quantum computation with concatenated encoding of qubits is penalized by internal communication overhead. Many quantum computation proposals rely on nearest-neighbour communication, which requires excess gate operations. For a qubit stripe with a width of L+1 physical qubits implementing L levels of concatenation, we find that the error threshold of 2.1x10^-5 without any communication burden is reduced to 1.2x10^-7 when gate errors are the dominant source of error. This ~175X penalty in error threshold translates to an ~13X penalty in the amplitude and timing of gate operation control pulses.Comment: minor correctio

    Calculating photonic Green's functions using a non-orthogonal finite difference time domain method

    Full text link
    In this paper we shall propose a simple scheme for calculating Green's functions for photons propagating in complex structured dielectrics or other photonic systems. The method is based on an extension of the finite difference time domain (FDTD) method, originally proposed by Yee, also known as the Order-N method, which has recently become a popular way of calculating photonic band structures. We give a new, transparent derivation of the Order-N method which, in turn, enables us to give a simple yet rigorous derivation of the criterion for numerical stability as well as statements of charge and energy conservation which are exact even on the discrete lattice. We implement this using a general, non-orthogonal co-ordinate system without incurring the computational overheads normally associated with non-orthogonal FDTD. We present results for local densities of states calculated using this method for a number of systems. Firstly, we consider a simple one dimensional dielectric multilayer, identifying the suppression in the state density caused by the photonic band gap and then observing the effect of introducing a defect layer into the periodic structure. Secondly, we tackle a more realistic example by treating a defect in a crystal of dielectric spheres on a diamond lattice. This could have application to the design of super-efficient laser devices utilising defects in photonic crystals as laser cavities.Comment: RevTex file. 10 pages with 8 postscript figures. Submitted to Phys Rev
    corecore