30 research outputs found
True Neutrality as a New Type of Flavour
A classification of leptonic currents with respect to C-operation requires
the separation of elementary particles into the two classes of vector C-even
and axial-vector C-odd character. Their nature has been created so that to each
type of lepton corresponds a kind of neutrino. Such pairs are united in
families of a different C-parity. Unlike the neutrino of a vector type, any
C-noninvariant Dirac neutrino must have his Majorana neutrino. They constitute
the purely neutrino families. We discuss the nature of a corresponding
mechanism responsible for the availability in all types of axial-vector
particles of a kind of flavour which distinguishes each of them from others by
a true charge characterized by a quantum number conserved at the interactions
between the C-odd fermion and the field of emission of the corresponding types
of gauge bosons. This regularity expresses the unidenticality of truly neutral
neutrino and antineutrino, confirming that an internal symmetry of a
C-noninvariant particle is described by an axial-vector space. Thereby, a true
flavour together with the earlier known lepton flavour predicts the existence
of leptonic strings and their birth in single and double beta decays as a unity
of flavour and gauge symmetry laws. Such a unified principle explains the
availability of a flavour symmetrical mode of neutrino oscillations.Comment: 19 pages, LaTex, Published version in IJT
Amplification of waves from a rotating body
In 1971, Zel’dovich predicted that quantum fluctuations and classical waves reflected from a rotating absorbing cylinder will gain energy and be amplified. This concept, which is a key step towards the understanding that black holes may amplify quantum fluctuations, has not been verified experimentally owing to the challenging experimental requirement that the cylinder rotation rate must be larger than the incoming wave frequency. Here, we demonstrate experimentally that these conditions can be satisfied with acoustic waves. We show that low-frequency acoustic modes with orbital angular momentum are transmitted through an absorbing rotating disk and amplified by up to 30% or more when the disk rotation rate satisfies the Zel’dovich condition. These experiments address an outstanding problem in fundamental physics and have implications for future research into the extraction of energy from rotating systems
Influence of epithermal muonic molecule formation on kinetics of the CF processes in deuterium
The non-resonant formation of molecules in the loosely bound state in
collisions of non-thermalized atoms with deuterium molecules D has
been considered. The process of such a type is possible only for collision
energies exceeded the ionization potential of D. The calculated rates of
formation in the above-threshold energy region are about one order of
magnitude higher than obtained earlier.
The role of epithermal non-resonant -molecule formation for the kinetics
of CF processes in D gas was studied. It was shown that the
non-resonant formation by atoms accelerated during the cascade
can be directly observed in the neutron time spectra at very short initial
times.Comment: 6 pages, 5 figures, Proceedings of the International Conference on
Exotic Atoms and Related Topics EXA-2011, Vienna, Sep 5-9, 201
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit