53 research outputs found
Energetic Suppression of Decoherence in Exchange-Only Quantum Computation
Universal quantum computation requiring only the Heisenberg exchange
interaction and suppressing decoherence via an energy gap is presented. The
combination of an always-on exchange interaction between the three physical
qubits comprising the encoded qubit and a global magnetic field generates an
energy gap between the subspace of interest and all other states. This energy
gap suppresses decoherence. Always-on exchange couplings greatly simplify
hardware specifications and the implementation of inter-logical-qubit gates. A
controlled phase gate can be implemented using only three Heisenberg exchange
operations all of which can be performed simultaneously.Comment: 4 pages, 4 figure
A Scalable Architecture for Coherence-Preserving Qubits
We propose scalable architectures for the coherence-preserving qubits
introduced by Bacon, Brown, and Whaley [Phys. Rev. Lett. {\bf 87}, 247902
(2001)]. These architectures employ extra qubits providing additional degrees
of freedom to the system. We show that these extra degrees of freedom can be
used to counter errors in coupling strength within the coherence-preserving
qubit and to combat interactions with environmental qubits. The presented
architectures incorporate experimentally viable methods for inter-logical-qubit
coupling and can implement a controlled phase gate via three simultaneous
Heisenberg exchange operations. The extra qubits also provide flexibility in
the arrangement of the physical qubits. Specifically, all physical qubits of a
coherent-preserving qubit lattice can be placed in two spatial dimensions. Such
an arrangement allows for universal cluster state computation.Comment: 4 pages, 4 figure
Quantum Cellular Automata Pseudo-Random Maps
Quantum computation based on quantum cellular automata (QCA) can greatly
reduce the control and precision necessary for experimental implementations of
quantum information processing. A QCA system consists of a few species of
qubits in which all qubits of a species evolve in parallel. We show that, in
spite of its inherent constraints, a QCA system can be used to study complex
quantum dynamics. To this aim, we demonstrate scalable operations on a QCA
system that fulfill statistical criteria of randomness and explore which
criteria of randomness can be fulfilled by operators from various QCA
architectures. Other means of realizing random operators with only a few
independent operators are also discussed.Comment: 7 pages, 8 figures, submitted to PR
- …