300 research outputs found
Coulomb induced positive current-current correlations in normal conductors
In the white-noise limit current correlations measured at different contacts
of a mesoscopic conductor are negative due to the antisymmetry of the wave
function (Pauli principle). We show that current fluctuations at capacitive
contacts induced via the long range Coulomb interaction as consequence of
charge fluctuations in the mesoscopic sample can be {\it positively}
correlated. The positive correlations are a consequence of the extension of the
wave-functions into areas near both contacts. As an example we investigate in
detail a quantum point contact in a high magnetic field under conditions in
which transport is along an edge state.Comment: Revtex, 4 pages includes 2 figure
Zero-point fluctuations in the ground state of a mesoscopic normal ring
We investigate the persistent current of a ring with an in-line quantum dot
capacitively coupled to an external circuit. Of special interest is the
magnitude of the persistent current as a function of the external impedance in
the zero temperature limit when the only fluctuations in the external circuit
are zero-point fluctuations. These are time-dependent fluctuations which
polarize the ring-dot structure and we discuss in detail the contribution of
displacement currents to the persistent current. We have earlier discussed an
exact solution for the persistent current and its fluctuations based on a Bethe
ansatz. In this work, we emphasize a physically more intuitive approach using a
Langevin description of the external circuit. This approach is limited to weak
coupling between the ring and the external circuit. We show that the zero
temperature persistent current obtained in this approach is consistent with the
persistent current calculated from a Bethe ansatz solution. In the absence of
coupling our system is a two level system consisting of the ground state and
the first excited state. In the presence of coupling we investigate the
projection of the actual state on the ground state and the first exited state
of the decoupled ring. With each of these projections we can associate a phase
diffusion time. In the zero temperature limit we find that the phase diffusion
time of the excited state projection saturates, whereas the phase diffusion
time of the ground state projection diverges.Comment: 12 pages, 5 figure
Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors
New experiments that measure the low-frequency shot-noise spectrum at local
tunneling contacts on mesoscopic structures are proposed. The current
fluctuation spectrum at a single tunneling tip is determined by local partial
densities of states. The current-correlation spectrum between two tunneling
tips is sensitive to non-diagonal density of states elements which are
expressed in terms of products of scattering states of the conductor. Thus such
an experiment permits to investigate correlations of electronic wave functions.
We present specific results for a clean wire with a single barrier and for
metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure
Quantum-mechanical model of the Kerr-Newman black hole
We consider a Hamiltonian quantum theory of stationary spacetimes containing
a Kerr-Newman black hole. The physical phase space of such spacetimes is just
six-dimensional, and it is spanned by the mass , the electric charge and
angular momentum of the hole, together with the corresponding canonical
momenta. In this six-dimensional phase space we perform a canonical
transformation such that the resulting configuration variables describe the
dynamical properties of Kerr-Newman black holes in a natural manner. The
classical Hamiltonian written in terms of these variables and their conjugate
momenta is replaced by the corresponding self-adjoint Hamiltonian operator and
an eigenvalue equation for the Arnowitt-Deser-Misner (ADM) mass of the hole,
from the point of view of a distant observer at rest, is obtained. In a certain
very restricted sense, this eigenvalue equation may be viewed as a sort of
"Schr\"odinger equation of black holes". Our "Schr\"odinger equation" implies
that the ADM mass, electric charge and angular momentum spectra of black holes
are discrete, and the mass spectrum is bounded from below. Moreover, the
spectrum of the quantity , where is the angular momentum per
unit mass of the hole, is strictly positive when an appropriate self-adjoint
extension is chosen. The WKB analysis yields the result that the large
eigenvalues of , and are of the form , where is an
integer. It turns out that this result is closely related to Bekenstein's
proposal on the discrete horizon area spectrum of black holes.Comment: 30 pages, 3 figures, RevTe
MEDICINAL FORM OF TNF-α FOR LOCAL ADMINISTRATION
Composite preparation of tumor necrosis factor alpha and rheopolyglukin and polyethylene glycol (TNF-α+PG+PEG) was obtained. The specific activity of the samples was 4,13 х 107 IU/mg. The cytolytic activity of drugs TNF-α+PG+PEG and rhTNF-α did not change after 4 months when stored at 6 °С. Preparation TNF-α+PG+PEG provided a moderately prolonged elevation of TNF-alpha in blood of laboratory mice in contrast to TNF-α when they applied to the skin. The composite preparation did not have toxic, allergic and locally irritating action in experiments on laboratory animals
Nanoscopic Tunneling Contacts on Mesoscopic Multiprobe Conductors
We derive Bardeen-like expressions for the transmission probabilities between
two multi-probe mesoscopic conductors coupled by a weak tunneling contact. We
emphasize especially the dual role of a weak coupling contact as a current
source and sink and analyze the magnetic field symmetry. In the limit of a
point-like tunneling contact the transmission probability becomes a product of
local, partial density of states of the two mesoscopic conductors. We present
expressions for the partial density of states in terms of functional
derivatives of the scattering matrix with respect to the local potential and in
terms of wave functions. We discuss voltage measurements and resistance
measurements in the transport state of conductors. We illustrate the theory for
the simple case of a scatterer in an otherwise perfect wire. In particular, we
investigate the development of the Hall-resistance as measured with weak
coupling probes.Comment: 10 pages, 5 figures, revte
Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus
Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Switching on the Lights for Gene Therapy
Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application
- …