4,518 research outputs found

    Visual Comfort Assessment for Stereoscopic Image Retargeting

    Full text link
    In recent years, visual comfort assessment (VCA) for 3D/stereoscopic content has aroused extensive attention. However, much less work has been done on the perceptual evaluation of stereoscopic image retargeting. In this paper, we first build a Stereoscopic Image Retargeting Database (SIRD), which contains source images and retargeted images produced by four typical stereoscopic retargeting methods. Then, the subjective experiment is conducted to assess four aspects of visual distortion, i.e. visual comfort, image quality, depth quality and the overall quality. Furthermore, we propose a Visual Comfort Assessment metric for Stereoscopic Image Retargeting (VCA-SIR). Based on the characteristics of stereoscopic retargeted images, the proposed model introduces novel features like disparity range, boundary disparity as well as disparity intensity distribution into the assessment model. Experimental results demonstrate that VCA-SIR can achieve high consistency with subjective perception

    Constraints on large-extra-dimensions model through 125 GeV Higgs pair production at the LHC

    Full text link
    Based on the analysis of 5 fb^-1 of data at the LHC, the ATLAS and CMS collaborations have presented evidence for a Higgs boson with a mass in the 125 GeV range. We consider the 125 GeV neutral Higgs pair production process in the context of large-extra-dimensions (LED) model including the Kaluza-Klein (KK)excited gravitons at the LHC. We consider the standard model(SM) Higgs pair production in gluon-gluon fusion channel and pure LED effects through graviton exchange as well as their interferences. It is shown that such interferences should be included; the LED model raises the transverse momentum (Pt)and invariant mass (M_HH) distributions at high scales of Pt and M_HH of the Higgs pair production. By using the Higgs pair production we could set the discovery limit on the cutoff scale M_S up to 6 TeV for delta = 2 and 4.5 TeV for delta = 6.Comment: 6 figure

    Methological quality of systematic reviews and meta-analyses on acupuncture for stroke: a review of review

    Get PDF
    Objective: To assess the methodological quality of systematic reviews and meta-analyses regarding acupuncture intervention for stroke and the primary studies within them. Methods: Two researchers searched PubMed, Cumulative index to Nursing and Allied Health Literature, Embase, ISI Web of Knowledge, Cochrane, Allied and Complementary Medicine, Ovid Medline, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang and Traditional Chinese Medical Database to identify systematic reviews and meta-analyses about acupuncture for stroke published from the inception to December 2016. Review characteristics and the criteria for assessing the primary studies within reviews were extracted. The methodological quality of the reviews was assessed using adapted Oxman and Guyatt Scale. The methodological quality of primary studies was also assessed. Results: Thirty-two eligible reviews were identified, 15 in English and 17 in Chinese. The English reviews were scored higher than the Chinese reviews (P=0.025), especially in criteria for avoiding bias and the scope of search. All reviews used the quality criteria to evaluate the methodological quality of primary studies, but some criteria were not comprehensive. The primary studies, in particular the Chinese reviews, had problems with randomization, allocation concealment, blinding, dropouts and withdrawals, intent-to-treat analysis and adverse events. Conclusions: Important methodological flaws were found in Chinese systematic reviews and primary studies. It was necessary to improve the methodological quality and reporting quality of both the systematic reviews published in China and primary studies on acupuncture for stroke

    DPF: Learning Dense Prediction Fields with Weak Supervision

    Full text link
    Nowadays, many visual scene understanding problems are addressed by dense prediction networks. But pixel-wise dense annotations are very expensive (e.g., for scene parsing) or impossible (e.g., for intrinsic image decomposition), motivating us to leverage cheap point-level weak supervision. However, existing pointly-supervised methods still use the same architecture designed for full supervision. In stark contrast to them, we propose a new paradigm that makes predictions for point coordinate queries, as inspired by the recent success of implicit representations, like distance or radiance fields. As such, the method is named as dense prediction fields (DPFs). DPFs generate expressive intermediate features for continuous sub-pixel locations, thus allowing outputs of an arbitrary resolution. DPFs are naturally compatible with point-level supervision. We showcase the effectiveness of DPFs using two substantially different tasks: high-level semantic parsing and low-level intrinsic image decomposition. In these two cases, supervision comes in the form of single-point semantic category and two-point relative reflectance, respectively. As benchmarked by three large-scale public datasets PASCALContext, ADE20K and IIW, DPFs set new state-of-the-art performance on all of them with significant margins. Code can be accessed at https://github.com/cxx226/DPF

    NeRRF: 3D Reconstruction and View Synthesis for Transparent and Specular Objects with Neural Refractive-Reflective Fields

    Full text link
    Neural radiance fields (NeRF) have revolutionized the field of image-based view synthesis. However, NeRF uses straight rays and fails to deal with complicated light path changes caused by refraction and reflection. This prevents NeRF from successfully synthesizing transparent or specular objects, which are ubiquitous in real-world robotics and A/VR applications. In this paper, we introduce the refractive-reflective field. Taking the object silhouette as input, we first utilize marching tetrahedra with a progressive encoding to reconstruct the geometry of non-Lambertian objects and then model refraction and reflection effects of the object in a unified framework using Fresnel terms. Meanwhile, to achieve efficient and effective anti-aliasing, we propose a virtual cone supersampling technique. We benchmark our method on different shapes, backgrounds and Fresnel terms on both real-world and synthetic datasets. We also qualitatively and quantitatively benchmark the rendering results of various editing applications, including material editing, object replacement/insertion, and environment illumination estimation. Codes and data are publicly available at https://github.com/dawning77/NeRRF
    corecore