1,393 research outputs found
Single-cell Transcriptomics of Murine Mural Cells Reveals Cellular Heterogeneity
Mural cells (MCs) wrap around the endothelium, and participate in the development and homeostasis of vasculature. MCs have been reported as heterogeneous population morphologically and functionally. However, the transcriptional heterogeneity of MCs was rarely studied. In this study, we illustrated the transcriptional heterogeneity of MCs with different perspectives by using publicly available single-cell dataset GSE109774. Specifically, MCs are transcriptionally different from other cell types, and ligand-receptor interactions of different cells with MCs vary. Re-clustering of MCs identified five distinct subclusters. The heterogeneity of MCs in tissues was reflected by MC coverage, various distribution of MC subclusters, and ligand-receptor interactions of MCs and parenchymal cells. The transcriptomic diversity of MCs revealed in this article will help facilitate further research into MCs
Identification of subtype-specific metastasis-related genetic signatures in sarcoma
Background: Sarcomas are heterogeneous rare malignancies constituting approximately 1% of all solid cancers in adults and including more than 70 histological and molecular subtypes with different pathological and clinical development characteristics.
Method: We identified prognostic biomarkers of sarcomas by integrating clinical information and RNA-seq data from TCGA and GEO databases. In addition, results obtained from cell cycle, cell migration, and invasion assays were used to assess the capacity for Tanespimycin to inhibit the proliferation and metastasis of sarcoma.
Results: Sarcoma samples (N = 536) were divided into four pathological subtypes including DL (dedifferentiated liposarcoma), LMS (leiomyosarcoma), UPS (undifferentiated pleomorphic sarcomas), and MFS (myxofibrosarcoma). RNA-seq expression profile data from the TCGA dataset were used to analyze differentially expressed genes (DEGs) within metastatic and non-metastatic samples of these four sarcoma pathological subtypes with DEGs defined as metastatic-related signatures (MRS). Prognostic analysis of MRS identified a group of genes significantly associated with prognosis in three pathological subtypes: DL, LMS, and UPS. ISG15, NUP50, PTTG1, SERPINE1, and TSR1 were found to be more likely associated with adverse prognosis. We also identified Tanespimycin as a drug exerting inhibitory effects on metastatic LMS subtype and therefore can serve a potential treatment for this type of sarcoma.
Conclusions: These results provide new insights into the pathogenesis, diagnosis, treatment, and prognosis of sarcomas and provide new directions for further study of sarcoma
catena-Poly[[[aqua(1,10-phenanthroline)zinc(II)]-μ-3,3′-(p-phenylene)diacrylato] hemihydrate]
In the title compound, {[Zn(C12H8O4)(C12H8N2)(H2O)]·0.5H2O}n, each ZnII atom is six-coordinated by two N atoms from one 1,10-phenanthroline (phen), three carboxylate O atoms from two different L ligands [H2
L = 3,3′-(p-phenylene)diacrylic acid] and one water molecule in a distorted octahedral environment. The two L dianions are situated across inversion centres and bridge neighbouring ZnII centres, yielding a chain propagating parallel to [100]. O—H⋯O hydrogen bonds between the coordinated water molecule, the solvent water molecule (half-occupied) and the carboxylate O atoms further stabilize the structure
DNA Repair Pathways in Cancer Therapy and Resistance
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy
Life cycle assessment shows that retrofitting coal-fired power plants with fuel cells will substantially reduce greenhouse gas emissions
Addressing emissions released from coal-fired power plants (CFPPs) is vital to mitigate climate change. China aims to replace 240 TWh CFPPs with fuel cell (FC) technologies by 2050 to achieve carbon-neutrality goals. However, FCs are not emission-free throughout their technology life cycle, and FC effectiveness will vary depending on the CFPP configuration. Despite these uncertainties, a comprehensive evaluation of on-site CFPP-to-FC mitigation potential throughout the entire life cycle remains underexplored. Here, we use a prospective life cycle assessment to evaluate the inclusive mitigation potential of retrofitting 240 TWh CFPPs via four FCs that use wind power/natural gas as feedstocks. We find CO2, PM2.5, and SO2 emissions decrease by 72.0%–97.0%, 55.5%–92.6%, and 23.1%–86.1%, respectively, by 2050. Wind-electrolysis hydrogen FCs enable the largest life cycle CO2 reduction, but mining metals for wind turbines reduces PM2.5 and SO2 savings. Prioritizing FC deployment in northern China could double the mitigation potential. Our study provides insights for designing carbon-neutrality CFPP-to-FC roadmaps in China
Molecular Mechanisms of Same TCM Syndrome for Different Diseases and Different TCM Syndrome for Same Disease in Chronic Hepatitis B and Liver Cirrhosis
Traditional Chinese medicine (TCM) treatment is based on the traditional diagnose method to distinguish the TCM syndrome, not the disease. So there is a phenomenon in the relationship between TCM syndrome and disease, called Same TCM Syndrome for Different Diseases and Different TCM Syndrome for Same Disease. In this study, we demonstrated the molecular mechanisms of this phenomenon using the microarray samples of liver-gallbladder dampness-heat syndrome (LGDHS) and liver depression and spleen deficiency syndrome (LDSDS) in the chronic hepatitis B (CHB) and liver cirrhosis (LC). The results showed that the difference between CHB and LC was gene expression level and the difference between LGDHS and LDSDS was gene coexpression in the G-protein-coupled receptor protein-signaling pathway. Therein genes GPER, PTHR1, GPR173, and SSTR1 were coexpressed in LDSDS, but not in LGDHS. Either CHB or LC was divided into the alternative LGDHS and LDSDS by the gene correlation, which reveals the molecular feature of Different TCM Syndrome for Same Disease. The alternatives LGDHS and LDSDS were divided into either CHB or LC by the gene expression level, which reveals the molecular feature of Same TCM Syndrome for Different Diseases
Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 uW
We demonstrate single-mode microdisk lasers in the telecom band with
ultra-low thresholds on erbium-ytterbium co-doped thin-film lithium niobate
(TFLN). The active microdisk were fabricated with high-Q factors by
photo-lithography assisted chemo-mechanical etching. Thanks to the
erbium-ytterbium co-doping providing high optical gain, the ultra-low loss
nanostructuring, and the excitation of high-Q coherent polygon modes which
suppresses multi-mode lasing and allows high spatial mode overlap factor
between pump and lasing modes, single-mode laser emission operating at 1530 nm
wavelength was observed with an ultra-low threshold, under 980-nm-band optical
pump. The threshold was measured as low as 1 uW, which is one order of
magnitude smaller than the best results previously reported in single-mode
active TFLN microlasers. And the conversion efficiency reaches 0.406%, which is
also the highest value reported in single-mode active TFLN microlasers.Comment: 5 pages,3 figure
Trends, Drivers, and Mitigation of CO<sub>2</sub> Emissions in the Guangdong–Hong Kong–Macao Greater Bay Area
The Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is a national initiative aimed at building a world-class city cluster in China and whose trends, socioeconomic drivers of CO2 emissions, and mitigation pathways are of great significance to the high-quality regional economic development. This study compiled the CO2 emission inventories of the GBA from 2000 to 2019 and explored the key drivers of CO2 emissions using the logarithmic mean Divisia index method. The results showed that CO2 emissions in GBA slowed significantly after 2017 and have already been decoupled from gross domestic product (GDP) growth. Economic growth and energy intensity are the major factors driving and inhibiting the increase in GBA's CO2 emissions, respectively. The energy production and heavy manufacturing sectors have reduced their roles in driving the growth of GBA's CO2 emissions. GBA achieved remarkable results in low-carbon development through industrial restructuring and upgrading. Industrial upgrades in Shenzhen and Hong Kong and technological advances in Shenzhen, Guangzhou, and Foshan have significantly curbed the growth in the GBA's CO2 emissions. The heterogeneity of cities in the GBA greatly increases the complexity of formalizing the allocation of emission reduction tasks and developing a roadmap for regional carbon neutrality. Graded emission reduction strategies and carbon peaking and neutrality policy recommendations for GBA cities are proposed. This study provides a scientific basis for the development of an action program for carbon peaking and neutrality in GBA cities and low-carbon development plans for other cities and regions.</p
- …