58 research outputs found

    Modification of Leather Split by In Situ Polymerization of Acrylates

    Get PDF
    Leather split, the byproduct of leather manufacture, possesses low utility value because it has loose weave of collagen fibers and weak mechanical strengths. Herein, a practical and convenient method for increasing strengths of leather split was developed by one-step in situ polymerization. The structures and properties of polyacrylate/leather split composites were systematically investigated. The results suggested the monomers with an α-methyl and a proper straight-chain ester group, such as nBMA, can effectively modify the leather split. For leather split with a thickness of 1.6 mm, the rational processes for preparation of polyacrylate/leather split composite are that monomer and split were stirred in a drum for 4 hours for full permeation and then the split was heated in anaerobic condition at 45°C for 30 min. The tensile strength, tear strength, and elongation at break of the optimized PnBMA/split composite were 18.72 MPa, 62.73 N/mm, and 46.02%, respectively. With these mechanical properties, the split after modification can be well used as leather for making shoes, bags, gloves, and clothing

    Development and validation of a highly dynamic and reusable picture-based scale: A new affective measurement tool

    Get PDF
    Emotion measurement is crucial to conducting emotion research. Numerous studies have extensively employed textual scales for psychological and organizational behavior research. However, emotions are transient states of organisms with relatively short duration, some insurmountable limitations of textual scales have been reported, including low reliability for single measurement or susceptibility to learning effects for multiple repeated use. In the present article, we introduce the Highly Dynamic and Reusable Picture-based Scale (HDRPS), which was randomly generated based on 3,386 realistic, high-quality photographs that are divided into five categories (people, animals, plants, objects, and scenes). Affective ratings of the photographs were gathered from 14 experts and 209 professional judges. The HDRPS was validated using the Self-Assessment Manikin and the PANAS by 751 participants. With an accuracy of 89.73%, this new tool allows researchers to measure individual emotions continuously for their research. The non-commercial use of the HDRPS system can be freely accessible by request at http://syy.imagesoft.cc:8989/Pictures.7z. HDRPS is used for non-commercial academic research only. As some of the images are collected through the open network, it is difficult to trace the source, so please contact the author if there are any copyright issues

    Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis

    Get PDF
    Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms

    An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment

    Get PDF
    Wheat is one of the most important food crops in the world and is considered one of the top targets in crop biotechnology. With the high-quality reference genomes of wheat and its relative species and the recent burst of genomic resources in Triticeae, demands to perform gene functional studies in wheat and genetic improvement have been rapidly increasing, requiring that production of transgenic wheat should become a routine technique. While established for more than 20 years, the particle bombardment-mediated wheat transformation has not become routine yet, with only a handful of labs being proficient in this technique. This could be due to, at least partly, the low transformation efficiency and the technical difficulties. Here, we describe the current version of this method through adaptation and optimization. We report the detailed protocol of producing transgenic wheat by the particle gun, including several critical steps, from the selection of appropriate explants (i.e., immature scutella), the preparation of DNA-coated gold particles, and several established strategies of tissue culture. More importantly, with over 20 years of experience in wheat transformation in our lab, we share the many technical details and recommendations and emphasize that the particle bombardment-mediated approach has fewer limitations in genotype dependency and vector construction when compared with the Agrobacterium-mediated methods. The particle bombardment-mediated method has been successful for over 30 wheat genotypes, from the tetraploid durum wheat to the hexaploid common wheat, from modern elite varieties to landraces. In conclusion, the particle bombardment-mediated wheat transformation has demonstrated its potential and wide applications, and the full set of protocol, experience, and successful reports in many wheat genotypes described here will further its impacts, making it a routine and robust technique in crop research labs worldwide

    Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning

    No full text
    Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy

    Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms

    No full text
    Purity is an important factor of maize seed quality that affects yield, and traditional seed purity identification methods are costly or time-consuming. To achieve rapid and accurate detection of the purity of maize seeds, a method for identifying maize seed varieties, using random subspace integrated learning and hyperspectral imaging technology, was proposed. A hyperspectral image of the maize seed endosperm was collected to obtain a spectral image cube with a wavelength range of 400∼1,000 nm. Methods, including Standard Normal Variate (SNV), multiplicative Scatter Correction (MSC), and Savitzky–Golay First Derivative (SG1) were used to preprocess raw spectral data. Iteratively retains informative variables (IRIV) and competitive adaptive reweighted sampling (CARS) were used to reduce the dimensions of the spectral data. A recognition model of maize seed varieties was established using k-nearest neighbor (KNN), support vector machine (SVM), line discrimination analysis (LDA) and decision tree (DT). Among the preprocessing methods, MSC has the best effect. Among the dimensionality reduction methods, IRIV has the best performance. Among the base classifiers, LDA had the highest precision. To improve the precision in identifying maize seed varieties, LDA was used as the base classifier to establish a random subspace ensemble learning (RSEL) model. Using MSC-IRIV-RSEL, precision increased from 0.9333 to 0.9556, and the Kappa coefficient increased from 0.9174 to 0.9457. This study shows that the method based on hyperspectral imaging technology combined with subspace ensemble learning algorithm is a new method for maize seed purity recognition

    Geo-Object-Based Land Cover Map Update for High-Spatial-Resolution Remote Sensing Images via Change Detection and Label Transfer

    No full text
    Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps

    Potential missed opportunities for diagnosis of lymphoepithelioma-like intrahepatic cholangiocarcinoma: report of a rare case

    No full text
    Lymphoepithelioma-like intrahepatic cholangiocarcinoma (LEL-ICC) is a rare distinctive variant of liver cancer with unique epidemiological and pathological characteristics, including dense lymphocyte infiltration. We herein describe a 67-year-old Chinese man with LEL-ICC. The patient had undergone endoscopic extraction of a bile duct stone 1 month prior. Contrast-enhanced abdominal computed tomography (CT) revealed a 2.5- × 2.5- × 1.5-cm low-density mass located in a covert part of the left lateral segment of the liver. Contrast-enhanced magnetic resonance imaging revealed a hyperintense lesion on T2-weighted and diffusion-weighted images of the left lateral liver, with similar size and signal characteristics in the arterial and portal venous phases. The patient subsequently underwent left lateral laparoscopic hepatectomy. The results of postoperative pathology and immunohistochemistry allowed for the definitive diagnosis. In situ hybridization using an Epstein–Barr virus-encoded RNA probe revealed extensive reactivity in the tumor cell nuclei, supporting a diagnosis of LEL-ICC. The patient was recurrence-free at 12 months postoperatively as shown by CT. A literature review indicated that in middle-aged patients with Epstein–Barr virus infection, a liver mass with a well-defined margin and a combination of hypervascularity and delayed intratumoral enhancement on CT and magnetic resonance imaging may suggest a diagnosis of LEL-ICC
    • …
    corecore