540 research outputs found
The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes.
A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol(®)), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC(0→24h) (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects
Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity.
The peroxidase-catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide has been studied in detail using the enzymes lactoperoxidase (LPO) from bovine milk and horseradish peroxidase (HRP). The results indicate the existence of two competing pathways, in which the nitrating species is either nitrogen dioxide or peroxynitrite. The first pathway involves one-electron oxidation of nitrite by the classical peroxidase intermediates compound I and compound II, whereas in the second pathway peroxynitrite is generated by reaction between enzyme-bound nitrite and hydrogen peroxide. The two mechanisms can be simultaneously operative, and their relative importance depends on the reagent concentrations. With HRP the peroxynitrite pathway contributes significantly only at relatively high nitrite concentrations, but for LPO this represents the main pathway even at relatively low (pathophysiological) nitrite concentrations and explains the high efficiency of the enzyme in the nitration. Myoglobin and hemoglobin are also active in the nitration of phenolic compounds, albeit with lower efficiency compared with peroxidases. In the case of myoglobin, endogenous nitration of the protein has been shown to occur in the absence of substrate. The main nitration site is the heme, but a small fraction of nitrated Tyr146 residue has been identified upon proteolytic digestion and high-performance liquid chromatography/mass spectrometry analysis of the peptide fragments. Preliminary investigation of the nitration of tryptophan derivatives by the peroxidase/nitrite/hydrogen peroxide systems shows that a complex pattern of isomeric nitration products is produced, and this pattern varies with nitrite concentration. Comparative experiments using chemical nitrating agents indicate that at low nitrite concentrations, the enzymatic nitration produces a regioisomeric mixture of nitrotryptophanyl derivatives resembling that obtained using nitrogen dioxide, whereas at high nitrite concentrations the product pattern resembles that obtained using peroxynitrite
Polymorphism of the pig-implantation protein 3 (preis3) gene and its association with litter size traits
The pre-implantation protein 3 (prei3), which might play a role in pre-implantation embryogenesis, is one of the promising candidate genes for litter size traits in pigs. In this study, a single nucleotide polymorphism (SNP: T802G) in intron 6 of the pig prei3 gene was detected and a genotyping assay for this SNP was developed. An association study for this SNP with litter size was performed in two independent populations. One population consisted of crossbred sows derived from Landrace, Large White, Chinese Tongcheng and/or Chinese Meishan (Line DIV). The other population constituted of crossbred animals derived from Chinese Qingping and Duroc (QD). Statistical analysis demonstrated that, in first parity, 2.65 more piglets were born and 3.82 more piglets were born alive in sows in Line DIV with genotype TT than with genotype GG. For second and subsequent litters, in both the DIV and QD lines there were significant differences in the number of piglets born alive between TG and GG sows, with the TG sows producing more piglets born alive than the GG sows. These results suggest that the prei3 SNP is significantly associated with litter size in the two populations studied, and could be useful in selection for increasing litter size in pigs. Further investigations on more pig populations with large sample sizes are needed to confirm this. South African Journal of Animal Science Vol. 36(3) 2006: 209-21
Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach
Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed
Genetic Structure and Inferences on Potential Source Areas for Bactrocera dorsalis (Hendel) Based on Mitochondrial and Microsatellite Markers
Bactrocera dorsalis (Diptera: Tephritidae) is mainly distributed in tropical and subtropical Asia and in the Pacific region. Despite its economic importance, very few studies have addressed the question of the wide genetic structure and potential source area of this species. This pilot study attempts to infer the native region of this pest and its colonization pathways in Asia. Combining mitochondrial and microsatellite markers, we evaluated the level of genetic diversity, genetic structure, and the gene flow among fly populations collected across Southeast Asia and China. A complex and significant genetic structure corresponding to the geographic pattern was found with both types of molecular markers. However, the genetic structure found was rather weak in both cases, and no pattern of isolation by distance was identified. Multiple long-distance dispersal events and miscellaneous host selection by this species may explain the results. These complex patterns may have been influenced by human-mediated transportation of the pest from one area to another and the complex topography of the study region. For both mitochondrial and microsatellite data, no signs of bottleneck or founder events could be identified. Nonetheless, maximal genetic diversity was observed in Myanmar, Vietnam and Guangdong (China) and asymmetric migration patterns were found. These results provide indirect evidence that the tropical regions of Southeast Asia and southern coast of China may be considered as the native range of the species and the population expansion is northward. Yunnan (China) is a contact zone that has been colonized from different sources. Regions along the southern coast of Vietnam and China probably served to colonize mainly the southern region of China. Southern coastal regions of China may also have colonized central parts of China and of central Yunnan
Binding of Tetracycline and Chlortetracycline to the Enzyme Trypsin: Spectroscopic and Molecular Modeling Investigations
Tetracycline (TC) and chlortetracycline (CTC) are common members of the widely used veterinary drug tetracyclines, the residue of which in the environment can enter human body, being potentially harmful. In this study, we establish a new strategy to probe the binding modes of TC and CTC with trypsin based on spectroscopic and computational modeling methods. Both TC and CTC can interact with trypsin with one binding site to form trypsin-TC (CTC) complex, mainly through van der Waals' interactions and hydrogen bonds with the affinity order: TC>CTC. The bound TC (CTC) can result in inhibition of trypsin activity with the inhibition order: CTC>TC. The secondary structure and the microenvironment of the tryptophan residues of trypsin were also changed. However, the effect of CTC on the secondary structure content of trypsin was contrary to that of TC. Both the molecular docking study and the trypsin activity experiment revealed that TC bound into S1 binding pocket, competitively inhibiting the enzyme activity, and CTC was a non-competitive inhibitor which bound to a non-active site of trypsin, different from TC due to the Cl atom on the benzene ring of CTC which hinders CTC entering into the S1 binding pocket. CTC does not hinder the binding of the enzyme substrate, but the CTC-trypsin-substrate ternary complex can not further decompose into the product. The work provides basic data for clarifying the binding mechanisms of TC (CTC) with trypsin and can help to comprehensively understanding of the enzyme toxicity of different members of tetracyclines in vivo
- …