147 research outputs found

    Activating signal cointegrator 2 required for liver lipid metabolism mediated by liver X receptors in mice

    Get PDF
    Activating signal cointegrator 2 (ASC-2), a cancer-amplified transcriptional coactivator of nuclear receptors and many other transcription factors, contains two LXXLL-type nuclear receptor interaction domains. Interestingly, the second LXXLL motif is highly specific to the liver X receptors (LXRs). In cotransfection, DN2, an ASC-2 fragment encompassing this motif, exerts a potent dominant-negative effect on transactivation by LXRs, which is rescued by ectopic coexpression of the full-length ASC-2 but not by other LXXLL-type coactivators, such as SRC-1 and TRAP220. In contrast, DN2/m, in which the LXXLL motif is mutated to LXXAA to abolish the interactions with LXRs, is without any effect. Accordingly, expression of DN2, but not DN2/m, in transgenic mice results in phenotypes that are highly homologous to those previously observed with LXRalpha(-/-) mice, including a rapid accumulation of large amounts of cholesterol and down-regulation of the known lipid-metabolizing target genes of LXRalpha in the liver upon being fed a high-cholesterol diet. These results identify ASC-2 as a physiologically important transcriptional coactivator of LXRs and demonstrate its pivotal role in the liver lipid metabolism.open1136sciescopu

    Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer

    Get PDF
    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Forster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and - resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.ope

    Serological assessment of gastric mucosal atrophy in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-invasive tools for gastric cancer screening and diagnosis are lacking. Serological testing with the detection of pepsinogen 1 (PG1), pepsinogen 2 (PG2) and gastrin 17 (G17) offers the possibility to detect preneoplastic gastric mucosal conditions. Aim of this study was to assess the performance of these serological tests in the presence of gastric neoplasia.</p> <p>Methods</p> <p>Histological and serological samples of 118 patients with gastric cancer have been assessed for tumor specific characteristics (Laurén type, localisation), degree of mucosal abnormalities (intestinal metaplasia, atrophy) and serological parameters (PG1, PG2, PG1/2-ratio, G17, <it>H. pylori </it>IgG, CagA status). Association of the general factors to the different serological values have been statistically analyzed.</p> <p>Results</p> <p>Patients with intestinal type gastric cancer had lower PG1 levels and a lower PG1/2-ratio compared to those with diffuse type cancer (<it>p </it>= 0.003). The serum levels of PG2 itself and G17 were not significantly altered. <it>H. pylori </it>infection in general had no influence on the levels of PG1, PG2 and G17 in the serum of gastric cancer patients. There was a trend towards lower PG1 levels in case of positive CagA-status (<it>p </it>= 0.058). The degree of both intestinal metaplasia and atrophy correlated inversely with serum levels for PG1 and the PG1/2-ratio (p < 0.01). Laurén-specific analysis revealed that this is only true for intestinal type tumors. Univariate ANOVA revealed atrophy and CagA-status as the only independent factors for low PG1 and a low PG1/2-ratio.</p> <p>Conclusions</p> <p>Glandular atrophy and a positive CagA status are determinant factors for decreased pepsinogen 1 levels in the serum of patients with gastric cancer. The serological assessment of gastric atrophy by analysis of serum pepsinogen is only adequate for patients with intestinal type cancer.</p

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants

    Get PDF
    All environmental cues lead to develop secondary stress conditions like osmotic and oxidative stress conditions that reduces average crop yields by more than 50% every year. The univalent reduction of molecular oxygen (O2) in metabolic reactions consequently produces superoxide anions (O2•−) and other reactive oxygen species (ROS) ubiquitously in all compartments of the cell that disturbs redox potential and causes threat to cellular organelles. The production of ROS further increases under stress conditions and especially in combination with high light intensity. Plants have evolved different strategies to minimize the accumulation of excess ROS like avoidance mechanisms such as physiological adaptation, efficient photosystems such as C4 or CAM metabolism and scavenging mechanisms through production of antioxidants and antioxidative enzymes. Ascorbate-glutathione pathway plays an important role in detoxifying excess ROS in plant cells, which includes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in detoxifying O2•−radical and hydrogen peroxide (H2O2) respectively, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in recycling of reduced substrates such as ascorbate and glutathione. Efficient ROS management is one of the strategies used by tolerant plants to survive and perform cellular activities under stress conditions. The present chapter describes different sites of ROS generation and and their consequences under abiotic stress conditions and also described the approaches to overcome oxidative stress through genomics and genetic engineering

    A Century of Gibberellin Research

    Get PDF
    corecore