4,054 research outputs found

    Is There Unification in the 21st Century?

    Full text link
    In the last 100 years, the most important equations in physics are Maxwell's equations for electrodynamics, Einstein's equation for gravity, Dirac's equation for the electron and Yang-Mills equation for elementary particles. Do these equations follow a common principle and come from a single theory? Despite intensive efforts to unify gravity and the particle interactions in the last 30 years, the goal is still to be achieved. Recent theories have not answered any question in physics. We examine the issues involved in this long quest to understand the ultimate nature of spacetime and matter.Comment: Lecture delievered in Conference in Honor of Murray Gell-Mann's 80th Birthday. February 24 - 26, 2010. Nanyang Executive Centre, Singapore. 10 page

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe

    Metal-slotted polymer optical waveguide device

    Get PDF
    Metal-slotted optical waveguides (MSOWs) using an electro-optic polymer material have been experimentally demonstrated. The device consists of a three-layered slab waveguide in that the thin metal (gold) film strips are embedded on top of the lower cladding. The optical mode shapes and effective index of the propagation modes of the proposed waveguide structure were calculated using a simplified effective index method and a simulation tool. The fabrication and the device characteristics of a variable optical attenuator and an optical phase modulator based on MSOWs are discussed.open5

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m
    corecore