51 research outputs found

    SUSY vertex algebras and supercurves

    Full text link
    This article is a continuation of math.QA/0603633 Given a strongly conformal SUSY vertex algebra V and a supercurve X we construct a vector bundle V_X on X, the fiber of which, is isomorphic to V. Moreover, the state-field correspondence of V canonically gives rise to (local) sections of these vector bundles. We also define chiral algebras on any supercurve X, and show that the vector bundle V_X, corresponding to a SUSY vertex algebra, carries the structure of a chiral algebra.Comment: 50 page

    Borcherds symmetries in M-theory

    Get PDF
    It is well known but rather mysterious that root spaces of the EkE_k Lie groups appear in the second integral cohomology of regular, complex, compact, del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms) of toroidal compactifications of M theory. Their Borel subgroups are actually subgroups of supergroups of finite dimension over the Grassmann algebra of differential forms on spacetime that have been shown to preserve the self-duality equation obeyed by all bosonic form-fields of the theory. We show here that the corresponding duality superalgebras are nothing but Borcherds superalgebras truncated by the above choice of Grassmann coefficients. The full Borcherds' root lattices are the second integral cohomology of the del Pezzo surfaces. Our choice of simple roots uses the anti-canonical form and its known orthogonal complement. Another result is the determination of del Pezzo surfaces associated to other string and field theory models. Dimensional reduction on TkT^k corresponds to blow-up of kk points in general position with respect to each other. All theories of the Magic triangle that reduce to the EnE_n sigma model in three dimensions correspond to singular del Pezzo surfaces with A8nA_{8-n} (normal) singularity at a point. The case of type I and heterotic theories if one drops their gauge sector corresponds to non-normal (singular along a curve) del Pezzo's. We comment on previous encounters with Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real fermionic simple roots when they would naively aris

    Coherent states for Hopf algebras

    Full text link
    Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras possessing a Haar integral. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. A noncommutative resolution of identity formula is proved in that setup. Examples come from quantum groups.Comment: 19 pages, uses kluwer.cls; the exposition much improved; an example of deriving the resolution of identity via coherent states for SUq(2) added; the result differs from the proposals in literatur

    Randomness in Classical Mechanics and Quantum Mechanics

    Full text link
    The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations, i.e. the uncertainty (errors of observation) in the determination of coordinate and momentum is always positive (non zero). A "functional" formulation of classical mechanics was suggested. The fundamental equation of the microscopic dynamics in the functional approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. The Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton trajectories are computed. An interpretation of quantum mechanics is attempted in which both classical and quantum mechanics contain fundamental randomness. Instead of an ensemble of events one introduces an ensemble of observers.Comment: 12 pages, Late

    On the Genus Two Free Energies for Semisimple Frobenius Manifolds

    Full text link
    We represent the genus two free energy of an arbitrary semisimple Frobenius manifold as a sum of contributions associated with dual graphs of certain stable algebraic curves of genus two plus the so-called "genus two G-function". Conjecturally the genus two G-function vanishes for a series of important examples of Frobenius manifolds associated with simple singularities as well as for P1{\bf P}^1-orbifolds with positive Euler characteristics. We explain the reasons for such Conjecture and prove it in certain particular cases.Comment: 37 pages, 3 figures, V2: the published versio

    Differential Calculus on the Quantum Superspace and Deformation of Phase Space

    Full text link
    We investigate non-commutative differential calculus on the supersymmetric version of quantum space where the non-commuting super-coordinates consist of bosonic as well as fermionic (Grassmann) coordinates. Multi-parametric quantum deformation of the general linear supergroup, GLq(mn)GL_q(m|n), is studied and the explicit form for the R^{\hat R}-matrix, which is the solution of the Yang-Baxter equation, is presented. We derive the quantum-matrix commutation relation of GLq(mn)GL_q(m|n) and the quantum superdeterminant. We apply these results for the GLq(mn)GL_q(m|n) to the deformed phase-space of supercoordinates and their momenta, from which we construct the R^{\hat R}-matrix of q-deformed orthosymplectic group OSpq(2n2m)OSp_q(2n|2m) and calculate its R^{\hat R}-matrix. Some detailed argument for quantum super-Clifford algebras and the explict expression of the R^{\hat R}-matrix will be presented for the case of OSpq(22)OSp_q(2|2).Comment: 17 pages, KUCP-4

    Hidden Symmetries and Integrable Hierarchy of the N=4 Supersymmetric Yang-Mills Equations

    Get PDF
    We describe an infinite-dimensional algebra of hidden symmetries of N=4 supersymmetric Yang-Mills (SYM) theory. Our derivation is based on a generalization of the supertwistor correspondence. Using the latter, we construct an infinite sequence of flows on the solution space of the N=4 SYM equations. The dependence of the SYM fields on the parameters along the flows can be recovered by solving the equations of the hierarchy. We embed the N=4 SYM equations in the infinite system of the hierarchy equations and show that this SYM hierarchy is associated with an infinite set of graded symmetries recursively generated from supertranslations. Presumably, the existence of such nonlocal symmetries underlies the observed integrable structures in quantum N=4 SYM theory.Comment: 24 page

    On algebraic models of dynamical systems

    Full text link
    We describe a universal algebraic model which, being read appropriately, yields (periodic and infinite) discrete dynamical systems, as well as their ‘continuous limits’, which cover all differential scalar Lax systems. For this model we give: Two different constructions of an infinity of integrals; modified equations; deformations; infinitesimal automorphisms. The basic tools are supplied by symbolic calculus and the abstract Hamiltonian formalism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43214/1/11005_2004_Article_BF00401731.pd

    Quantum Deformed su(mn)su(m|n) Algebra and Superconformal Algebra on Quantum Superspace

    Full text link
    We study a deformed su(mn)su(m|n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. {}From the deformed su(14)su(1|4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2)iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms.Comment: 27 pages, KUCP-59, LaTeX fil

    Nilpotent deformations of N=2 superspace

    Full text link
    We investigate deformations of four-dimensional N=(1,1) euclidean superspace induced by nonanticommuting fermionic coordinates. We essentially use the harmonic superspace approach and consider nilpotent bi-differential Poisson operators only. One variant of such deformations (termed chiral nilpotent) directly generalizes the recently studied chiral deformation of N=(1/2,1/2) superspace. It preserves chirality and harmonic analyticity but generically breaks N=(1,1) to N=(1,0) supersymmetry. Yet, for degenerate choices of the constant deformation matrix N=(1,1/2) supersymmetry can be retained, i.e. a fraction of 3/4. An alternative version (termed analytic nilpotent) imposes minimal nonanticommutativity on the analytic coordinates of harmonic superspace. It does not affect the analytic subspace and respects all supersymmetries, at the expense of chirality however. For a chiral nilpotent deformation, we present non(anti)commutative euclidean analogs of N=2 Maxwell and hypermultiplet off-shell actions.Comment: 1+16 pages; v2: discussion of (pseudo)conjugations extended, version to appear in JHE
    corecore