334 research outputs found

    Charmless BsPP,PV,VVB_s\to PP, PV, VV Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II

    Full text link
    We provide a systematic study of charmless BsPP,PV,VVB_s \to PP, PV, VV decays (PP and VV denote pseudoscalar and vector mesons, respectively) based on an approximate six-quark operator effective Hamiltonian from QCD. The calculation of the relevant hard-scattering kernels is carried out, the resulting transition form factors are consistent with the results of QCD sum rule calculations. By taking into account important classes of power corrections involving "chirally-enhanced" terms and the vertex corrections as well as weak annihilation contributions with non-trivial strong phase, we present predictions for the branching ratios and CP asymmetries of BsB_s decays into PP, PV and VV final states, and also for the corresponding polarization observables in VV final states. It is found that the weak annihilation contributions with non-trivial strong phase have remarkable effects on the observables in the color-suppressed and penguin-dominated decay modes. In addition, we discuss the SU(3) flavor symmetry and show that the symmetry relations are generally respected

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Branching ratio and CP asymmetry of Bsπ+πB_s \to \pi^+ \pi^- decays in the perturbative QCD approach

    Full text link
    In this paper, we calculate the decay rate and CP asymmetry of the Bsπ+πB_s \to \pi^+\pi^- decay in perturbative QCD approach with Sudakov resummation. Since none of the quarks in final states is the same as those of the initial BsB_s meson, this decay can occur only via annihilation diagrams in the standard model. Besides the current-current operators, the contributions from the QCD and electroweak penguin operators are also taken into account. We find that (a) the branching ratio is about 4×1074 \times 10^{-7}; (b) the penguin diagrams dominate the total contribution; and (c) the direct CP asymmetry is small in size: no more than 33% ; but the mixing-induced CP asymmetry can be as large as ten percent testable in the near future LHC-b experiments.Comment: 12 pages, 4 figures included, RevTe

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mhm_h \sim 200 GeV) once the effective muon Yukawa coupling is large (ξμ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays BcDs(1968)ˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and BcDs(2317)ˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Weak decays of J/ψJ/\psi: the non-leptonic case

    Full text link
    In our previous study, we calculated the transition from factors of J/ψD(s)()J/\psi\to D^{(*)}_{(s)} using the QCD sum rules. Based on the factorization approximation, the obtained form factors can be applied to evaluate the weak non-leptonic decay rates of J/ψD(s)()+MJ/\psi\to D^{(*)}_{(s)}+M, where MM stands for a light pseudoscalar or vector meson. We predict that the branching ratio for inclusive non-leptonic two-body weak decays of J/ψJ/\psi which are realized via the spectator mechanism, can be as large as 1.3×1081.3 \times 10^{-8}, in particular, the branching ratio of J/ψDs±+ρJ/\psi\to D^{*\pm}_s+\rho^\mp can reach 5.3×1095.3 \times 10^{-9}. Such values will be marginally accessed by the ability of BESIII which will begin running very soon.Comment: 16 pages, revTex4, 1 figur

    Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules

    Full text link
    Within the Standard Model, we investigate the weak decays of ΛbΛ+γ\Lambda_b \to \Lambda + \gamma and ΛbΛ+l+l\Lambda_b \to \Lambda + l^{+} l^{-} with the light-cone sum rules approach. The higher twist distribution amplitudes of Λ\Lambda baryon to the leading conformal spin are included in the sum rules for transition form factors. Our results indicate that the higher twist distribution amplitudes almost have no influences on the transition form factors retaining the heavy quark spin symmetry, while such corrections can result in significant impacts on the form factors breaking the heavy quark spin symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of Λ\Lambda baryon are also employed in the sum rules for a comparison, which can give rise to the form factors approximately 5 times larger than that in terms of conformal expansion. Utilizing the form factors calculated in LCSR, we then perform a careful study on the decay rate, polarization asymmetry and forward-backward asymmetry, with respect to the decays of ΛbΛγ\Lambda_b \to \Lambda \gamma, Λl+l\Lambda l^{+}l^{-}.Comment: 38 pages, 15 figures, some typos are corrected and more references are adde
    corecore