80 research outputs found
Unified framework of the microscopic Landau-Lifshitz-Gilbert equation and its application to Skyrmion dynamics
The Landau-Lifshitz-Gilbert (LLG) equation is widely used to describe
magnetization dynamics. We develop a unified framework of the microscopic LLG
equation based on the nonequilibrium Green's function formalism. We present a
unified treatment for expressing the microscopic LLG equation in several
limiting cases, including the adiabatic, inertial, and nonadiabatic limits with
respect to the precession frequency for a magnetization with fixed magnitude,
as well as the spatial adiabatic limit for the magnetization with slow
variation in both its magnitude and direction. The coefficients of those terms
in the microscopic LLG equation are explicitly expressed in terms of
nonequilibrium Green's functions. As a concrete example, this microscopic
theory is applied to simulate the dynamics of a magnetic Skyrmion driven by
quantum parametric pumping. Our work provides a practical formalism of the
microscopic LLG equation for exploring magnetization dynamics
A Nanoscale Shape Memory Oxide
Stimulus-responsive shape memory materials have attracted tremendous research
interests recently, with much effort focused on improving their mechanical
actuation. Driven by the needs of nanoelectromechnical devices, materials with
large mechanical strain particularly at nanoscale are therefore desired. Here
we report on the discovery of a large shape memory effect in BiFeO3 at the
nanoscale. A maximum strain of up to ~14% and a large volumetric work density
can be achieved in association with a martensitic-like phase transformation.
With a single step, control of the phase transformation by thermal activation
or electric field has been reversibly achieved without the assistance of
external recovery stress. Although aspects such as hysteresis, micro-cracking
etc. have to be taken into consideration for real devices, the large shape
memory effect in this oxide surpasses most alloys and therefore demonstrates
itself as an extraordinary material for potential use in state-of-art
nano-systems.Comment: Accepted by Nature Communication
Recommended from our members
Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring.
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy
Analysis of the Characteristics of Fandom Culture and Its Influence on Group Behavior of College Students
The fandom, originally a spontaneous entertainment community formed by star-struck fans, has gradually developed into an organized and specialized circle of interests. Is it possible to extend the fandom culture from cyberspace to reality and establish a boundary separating the fandom culture from the mainstream culture? Are fans just a bunch of kids who are easily manipulated without their self-judgement? How can practitioners of ideological and political education correctly understand the fandom culture and properly guide it in the process of education, enabling college students to treat the fandom culture with correct concepts and mindsets, and steering the healthy growth of college students? This is the main research question of this topic
A Model Free Adaptive Scheme for Integrated Control of Civil Aircraft Trajectory and Attitude
The adaptive trajectory and attitude control is essential for the four-dimensional (4D) trajectory operation of civil aircraft in symmetric thrust flight. In this work, an integrated trajectory and attitude control scheme is proposed based on the =multi-input multi-output (MIMO) model free adaptive control (MFAC) method. First, the full-form dynamic linearization technique is adopted to build the equivalent data model of aircraft. Also, the MIMO MFAC scheme with saturation constraint is designed to achieve an accurate tracking control for a given 4D trajectory and attitude. Besides, the performance limitations of aircraft are taken into consideration, and the MIMO MFAC scheme with hard constraints is designed. In addition, to improve the simulation efficiency, a control scheme with mixed constraints, i.e., saturation and hard constraints, is further proposed. It can be seen from the simulation results that the proposed method can perform an integrated control of the aircraft 4D trajectory and attitude without precise modeling, and the control performance is better than that of the model-based control method in terms of flight altitude and yaw angle control. The integrated data-driven control scheme proposed in this paper provides a theoretical solution for the precise operation of aircraft under 4D trajectory
Leader-Following Consensus of Multi-agent in Switching Networks with Time-Delay
This paper is devoted to the study of multi-agent consensus with a time-varying reference state in directed networks with both switching topology and constant time delay. Stability analysis is performed based on a proposed Lyapunov–Krasovskii function. Sufficient conditions based on linear matrix inequalities (LMIs) are given to guarantee multi-agent consensus on a time-vary reference state under arbitrary switching of the network topology even if the network communication is affected by time delay. Finally, simulation examples are given to validate the theoretical results. DOI: http://dx.doi.org/10.11591/telkomnika.v11i6.260
Probiotic supplements and bone health in postmenopausal women: a meta-analysis of randomised controlled trials
Objective Osteoporosis is a common disease in postmenopausal women. Several studies have analysed the associations between dietary supplementation with probiotics and bone health in postmenopausal women, but the results are still controversial. We conducted this meta-analysis to assess the effects of probiotics supplement on bone mineral density (BMD) and bone turnover markers for postmenopausal women.Design Systematic review and meta-analysis.Methods We systematically searched PubMed, EMBASE and the Cochrane Library from their inception to November 2020 for randomised controlled trials (RCTs) assessing probiotic supplements and osteoporosis in postmenopausal women. Study-specific risk estimates were combined using random-effect models.Results Five RCTs (n=497) were included. Probiotic supplements were associated with a significantly higher BMD in the lumbar spine (standardised mean difference, SMD=0.27, 95% CI 0.09 to 0.44) than in control. There was no difference between probiotic supplements and BMD in hips (SMD=0.22, 95% CI −0.07 to 0.52). Collagen type 1 cross-linked C-telopeptide levels in the treatment groups were significantly lower than those of the placebo group (SMD=−0.34, 95% CI −0.60 to −0.09). In subgroup meta-analysis, levels of bone-specific alkaline phosphatase, osteoprotegerin, osteocalcin and tumour necrosis factor did not differ between the probiotic and placebo groups.Conclusions We conclude cautiously that supplementation with probiotics could increase lumbar BMD. More RCTs are recommended to validate or update these results
Effects of solidification on flow dynamics: A novel comprehension of defects formation in laser penetration welding
The laser penetration welding for medium-thickness plates struggles with unstable molten pool behavior and a limited processing window, often leading to welding defects including spatters, depressions, and especially humps. In this study, forming processes of the defects were observed by using a high-speed camera, and forming mechanism of the defects were then analyzed in detail by simultaneously considering the influences of force and solidification. It was clear that the mass loss caused by spattering during the heating phase contributed to the depression, which was consistent with the existing knowledge. However, the formation mechanism of humps concluded in this study was different to the present understanding. Apart from the influences of force, the effects of solidification on molten pools and humps were analyzed. Under the specific conditions, middle part of molten pool solidified rapidly, causing localized necking, and disrupting the circular flow of the molten metal. As a result, molten metal once flowed downward due to the gravity and temperature can no longer refill to the upper part again, leading to the accumulation of molten metal at lower part and ultimately the formation of humps. These findings offered a fresh perspective on the formation of hump, provided valuable guidance for enhancing the quality and efficiency of thick-plate laser welding
- …