8 research outputs found

    Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure

    Get PDF
    We have studied the electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure, i.e., with an In0.15Ga0.85As quantum well (QW) as capping layer above InAs quantum dots (QDs), via temperature-dependent photoluminescence, photo-modulated reflectance, and rapid thermal annealing (RTA) treatments. It is shown that the carrier transfer via wetting layer (WL) is impeded according to the results of temperature dependent peak energy and line width variation of both the ground states (GS) and excited states (ES) of QDs. The quenching of integrated intensity is ascribed to the thermal escape of electron from the dots to the complex In0.15Ga0.85As QW + InAs WL structure. Additionally, as the RTA temperature increases, the peak of PL blue shifts and the full width at half maximum shrinks. Especially, the intensity ratio of GS to ES reaches the maximum when the energy difference approaches the energy of one or two LO phonon(s) of InAs bulk material, which could be explained by phonon-enhanced inter-sublevels carrier relaxation in such asymmetric dot-in-well structure

    Gut Microbiota and Microbiota-Related Metabolites as Possible Biomarkers of Cognitive Aging

    No full text
    Gut microbiota composition and functionality can influence the pathophysiology of age-related cognitive impairment and dementia, according to a large number of animal studies. The translation of this concept to humans is still uncertain, due to the relatively low number of clinical studies focused on fecal microbiota and large number of environmental factors that influence the microbiota composition. However, the fecal microbiota composition of older patients with dementia is deeply different from that of healthy active controls, conditioning a different metabolic profile. The possible use of fecal microbiota-related parameters and microbiota-derived metabolites as biomarkers of cognitive performance and dementia is critically reviewed in this paper, focusing on the most promising areas of research for the future

    Cardiovascular Activity

    No full text
    corecore