446 research outputs found
Robust Multi-Image HDR Reconstruction for the Modulo Camera
Photographing scenes with high dynamic range (HDR) poses great challenges to
consumer cameras with their limited sensor bit depth. To address this, Zhao et
al. recently proposed a novel sensor concept - the modulo camera - which
captures the least significant bits of the recorded scene instead of going into
saturation. Similar to conventional pipelines, HDR images can be reconstructed
from multiple exposures, but significantly fewer images are needed than with a
typical saturating sensor. While the concept is appealing, we show that the
original reconstruction approach assumes noise-free measurements and quickly
breaks down otherwise. To address this, we propose a novel reconstruction
algorithm that is robust to image noise and produces significantly fewer
artifacts. We theoretically analyze correctness as well as limitations, and
show that our approach significantly outperforms the baseline on real data.Comment: to appear at the 39th German Conference on Pattern Recognition (GCPR)
201
Extracellular Vesicles Derived from Gram-Negative Bacteria, such as Escherichia coli, Induce Emphysema Mainly via IL-17A-Mediated Neutrophilic Inflammation
Recent evidence indicates that Gram-negative bacteria-derived extracellular vesicles (EVs) in indoor dust can evoke neutrophilic pulmonary inflammation, which is a key pathology of chronic obstructive pulmonary disease (COPD). Escherichia coli is a ubiquitous bacterium present in indoor dust and secretes nanometer-sized vesicles into the extracellular milieu. In the current study, we evaluated the role of E. coli-derived EVs on the development of COPD, such as emphysema. E. coli EVs were prepared by sequential ultrafiltration and ultracentrifugation. COPD phenotypes and immune responses were evaluated in C57BL/6 wild-type (WT), IFN-gamma-deficient, or IL-17A-deficient mice after airway exposure to E. coli EVs. The present study showed that indoor dust from a bed mattress harbors E. coli EVs. Airway exposure to E. coli EVs increased the production of proinflammatory cytokines, such as TNF-alpha and IL-6. In addition, the repeated inhalation of E. coli EVs for 4 wk induced neutrophilic inflammation and emphysema, which are associated with enhanced elastase activity. Emphysema and elastase activity enhanced by E. coli EVs were reversed by the absence of IFN-gamma or IL-17A genes. In addition, during the early period, lung inflammation is dependent on IL-17A and TNF-alpha, but not on IFN-gamma, and also on TLR4. Moreover, the production of IFN-gamma is eliminated by the absence of IL-17A, whereas IL-17A production is not abolished by IFN-gamma absence. Taken together, the present data suggest that E. coli-derived EVs induce IL-17A-dependent neutrophilic inflammation and thereby emphysema, possibly via upregulation of elastase activity.X111613Ysciescopu
Localized amyloidosis presenting with a penile mass: a case report
Amyloidosis is a disease characterized by the deposition of altered proteins in tissues. Amyloid deposition always occurs in the extracellular matrix and presents a fibrillary conformation. Local deposition of amyloid may occur in individual organs, without systemic involvement. We report here a rare case of localized penile shaft amyloidosis--an unusual location for amyloid deposition--presenting as a penile mass that resulted in a urethral stricture in 37-year old male patient. We have also comprehensively reviewed the literature regarding localized amyloidosis
Regulation of the let-7a-3 Promoter by NF-κB
Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7 family members, let-7a-3 and let-7b, which form a microRNA cluster and are located 864 bp apart on chromosome 22q13.31. Previous reports present conflicting data on the role of the NF-κB transcription factor in regulating let-7. We cloned three fragments upstream of the let-7a-3/let-7b miRNA genomic region into a plasmid containing a luciferase reporter gene. Ectopic expression of subunits of NF-κB (p50 or p65/RelA) significantly increased luciferase activity in HeLa, 293, 293T and 3T3 cells, indicating that the let-7a-3/let-7b promoter is highly responsive to NF-κB. Mutation of a putative NF-κB binding site at bp −833 reduced basal promoter activity and decreased promoter activity in the presence of p50 or p65 overexpression. Mutation of a second putative binding site, at bp −947 also decreased promoter activity basally and in response to p65 induction, indicating that both sites contribute to NF-κB responsiveness. While the levels of the endogenous primary let-7a and let-7b transcript were induced in response to NF-κB overexpression in 293T cells, the levels of fully processed, mature let-7a and let-7b miRNAs did not increase. Instead, levels of Lin-28B, a protein that blocks let-7 maturation, were induced by NF-κB. Increased Lin-28B levels could contribute to the lack of an increase in mature let-7a and let-7b. Our results suggest that the final biological outcome of NF-κB activation on let-7 expression may vary depending upon the cellular context. We discuss our results in the context of NF-κB activity in repressing self-renewal and promoting differentiation
Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds
Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D) hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types
Modulating Temporal and Spatial Oxygenation over Adherent Cellular Cultures
Oxygen is a key modulator of many cellular pathways, but current devices permitting in vitro oxygen modulation fail to meet the needs of biomedical research. A microfabricated insert for multiwell plates has been developed to more effectively control the temporal and spatial oxygen concentration to better model physiological phenomena found in vivo. The platform consists of a polydimethylsiloxane insert that nests into a standard multiwell plate and serves as a passive microfluidic gas network with a gas-permeable membrane aimed to modulate oxygen delivery to adherent cells. Equilibration time is on the order of minutes and a wide variety of oxygen profiles can be attained based on the device design, such as the cyclic profile achieved in this study, and even oxygen gradients to mimic those found in vivo. The proper biological consequences of the device's oxygen delivery were confirmed in cellular models via a proliferation assay and western analysis of the upregulation of hypoxia inducible transcription factor-1α. These experiments serve as a demonstration for the platform as a viable tool to increase experimental throughput and permit novel experimental possibilities in any biomedical research lab
A Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach
The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction
Gemcitabine-based versus fluoropyrimidine-based chemotherapy with or without platinum in unresectable biliary tract cancer: a retrospective study
<p>Abstract</p> <p>Background</p> <p>There is no standard palliative chemotherapy regimen in biliary tract cancers (BTC). Fluoropyrimidine or gemcitabine, with or without platinum, are most frequently used. We conducted this study to clarify the efficacy of palliative chemotherapy in BTC.</p> <p>Methods</p> <p>Patients with unresectable BTC treated with palliative chemotherapy between Oct 2001 and Aug 2006 at Seoul National University Hospital were reviewed retrospectively. Histologically confirmed cases of intrahepatic cholangiocarcinoma, gallbladder cancer, extrahepatic bile duct cancer, and ampulla of Vater carcinoma were enrolled. We analyzed the efficacy of regimens: gemcitabine (G) <it>versus </it>fluoropyrimidine (F) and with or without platinum (P).</p> <p>Results</p> <p>A total of 243 patients were enrolled. 159 patients (65%) were male and the median age of the patients was 60 years (range 26–81). Intrahepatic cholangiocarcinoma, gallbladder cancer, extrahepatic bile duct cancer, and ampulla of Vater carcinoma were 92, 72, 58, and 21 cases, respectively. The median progression free survival (PFS) was 4.3 months (95% CI, 3.7–4.9) and median overall survival (OS) was 8.7 months (95% CI, 7.4–10.0). Ninety-nine patients received G-based chemotherapy (94 GP, 5 G alone), and 144 patients received F-based chemotherapy (83 FP, 61 F alone). The response rate (RR), disease control rate (DCR), PFS and OS of G-based chemotherapy <it>versus </it>F-based chemotherapy were 16.7% <it>vs</it>. 19.5% (P = 0.591), 52.8% <it>vs</it>. 58.9% (P = 0.372), 4.0 months <it>vs</it>. 4.3 months (P = 0.816), and 7.8 months <it>vs</it>. 9.1 months (P = 0.848), respectively. Sixty-six patients received F or G without P, and 177 patients received F or G with P. The RR, DCR, PFS and OS of chemotherapy without P <it>versus </it>chemotherapy including P were 12.7% <it>vs</it>. 20.6% (P = 0.169), 46.0% <it>vs</it>. 60.6% (P = 0.049), 3.3 months <it>vs</it>. 4.4 months (P = 0.887), and 10.6 months <it>vs</it>. 8.1 months (P = 0.257), respectively.</p> <p>Conclusion</p> <p>In unresectable BTC, F-based and G-based chemotherapy showed similar efficacy in terms of RR, DCR, PFS and OS. The benefit of adding P to F or G was not significant except for DCR. Further prospective studies which define the efficacy of various chemotherapeutic regimens in BTC are warranted.</p
Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging
Cellular senescence involves a reduction in adult stem cell self-renewal, and epigenetic regulation of gene expression is one of the main underlying mechanisms. Here, we observed that the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) caused by inhibition of histone deacetylase (HDAC) activity leads to down-regulation of high mobility group A2 (HMGA2) and, on the contrary, to up-regulation of p16INK4A, p21CIP1/WAF1 and p27KIP1. We found that let-7a1, let-7d, let-7f1, miR-23a, miR-26a and miR-30a were increased during replicative and HDAC inhibitor-mediated senescence of hUCB-MSCs by microRNA microarray and real-time quantitative PCR. Furthermore, the configurations of chromatins beading on these miRNAs were prone to transcriptional activation during HDAC inhibitor-mediated senescence. We confirmed that miR-23a, miR-26a and miR-30a inhibit HMGA2 to accelerate the progress of senescence. These findings suggest that HDACs may play important roles in cellular senescence by regulating the expression of miRNAs that target HMGA2 through histone modification
- …