11 research outputs found

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    Get PDF
    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation

    Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics

    Get PDF
    Microorganisms exist in the environment as multicellular communities that face the challenge of surviving under nutrient-limited conditions. Chemical communication is an essential part of the way in which these populations coordinate their behavior, and there has been an explosion of understanding in recent years regarding how this is accomplished. Much less, however, is understood about the way these communities sustain their metabolism. Bacteria of the genus Pseudomonas are ubiquitous, and are distinguished by their production of colorful secondary metabolites called phenazines. In this article, we suggest that phenazines, which are produced under conditions of high cell density and nutrient limitation, may be important for the persistence of pseudomonads in the environment
    corecore