423 research outputs found
Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer microcalcifications
This is the final version. Available from Optical Society of America via the DOI in this record. Long-wavelength identification of microcalcifications in breast cancer tissue is demonstrated using a novel upconversion raster scanning microscope. The system consists of quantum cascade lasers (QCL) for illumination and an upconversion system for efficient, high-speed detection using a silicon detector. Absorbance spectra and images of regions of ductal carcinoma in situ (DCIS) from the breast have been acquired using both upconversion and Fourier-transform infrared (FTIR) systems. The spectral images are compared and good agreement is found between the upconversion and the FTIR systems.European Unio
High fidelity copy number analysis of formalin-fixed and paraffin-embedded tissues using affymetrix cytoscan HD chip
Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples. © 2014 Yu et al
Expression of Multiple Artificial MicroRNAs from a Chicken miRNA126-Based Lentiviral Vector
Background: The use of RNAi in both basic and translational research often requires expression of multiple siRNAs from the
same vector.
Methods/Principal Findings: We have developed a novel chicken miR126-based artificial miRNA expression system that can
express one, two or three miRNAs from a single cassette in a lentiviral vector. We show that each of the miRNAs expressed
from the same lentiviral vector is capable of potent inhibition of reporter gene expression in transient transfection and
stable integration assays in chicken fibroblast DF-1 cells. Transduction of Vero cells with lentivirus expressing two or three
different anti-influenza miRNAs leads to inhibition of influenza virus production. In addition, the chicken miR126-based
expression system effectively inhibits reporter gene expression in human, monkey, dog and mouse cells. These results
demonstrate that the flanking regions of a single primary miRNA can support processing of three different stem-loops in a
single vector.
Conclusions/Significance: This novel design expands the means to express multiple miRNAs from the same vector for
potent and effective silencing of target genes and influenza virus.National Institutes of Health (U.S.) (Grant R01AI056267)Cobb-Vantress, inc
Breast cancer risk factors and a novel measure of volumetric breast density: cross-sectional study
We conducted a cross-sectional study nested within a prospective cohort of breast cancer risk factors and two novel measures of breast density volume among 590 women who had attended Glasgow University (1948–1968), replied to a postal questionnaire (2001) and attended breast screening in Scotland (1989–2002). Volumetric breast density was estimated using a fully automated computer programme applied to digitised film-screen mammograms, from medio-lateral oblique mammograms at the first-screening visit. This measured the proportion of the breast volume composed of dense (non-fatty) tissue (Standard Mammogram Form (SMF)%) and the absolute volume of this tissue (SMF volume, cm3). Median age at first screening was 54.1 years (range: 40.0–71.5), median SMF volume 70.25 cm3 (interquartile range: 51.0–103.0) and mean SMF% 26.3%, s.d.=8.0% (range: 12.7–58.8%). Age-adjusted logistic regression models showed a positive relationship between age at last menstrual period and SMF%, odds ratio (OR) per year later: 1.05 (95% confidence interval: 1.01–1.08, P=0.004). Number of pregnancies was inversely related to SMF volume, OR per extra pregnancy: 0.78 (0.70–0.86, P<0.001). There was a suggestion of a quadratic relationship between birthweight and SMF%, with lowest risks in women born under 2.5 and over 4 kg. Body mass index (BMI) at university (median age 19) and in 2001 (median age 62) were positively related to SMF volume, OR per extra kg m−2 1.21 (1.15–1.28) and 1.17 (1.09–1.26), respectively, and inversely related to SMF%, OR per extra kg m−2 0.83 (0.79–0.88) and 0.82 (0.76–0.88), respectively, P<0.001. Standard Mammogram Form% and absolute SMF volume are related to several, but not all, breast cancer risk factors. In particular, the positive relationship between BMI and SMF volume suggests that volume of dense breast tissue will be a useful marker in breast cancer studies
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Double Diffraction Dissociation at the Fermilab Tevatron Collider
We present results from a measurement of double diffraction dissociation in
collisions at the Fermilab Tevatron collider. The production cross
section for events with a central pseudorapidity gap of width
(overlapping ) is found to be [] at [630]
GeV. Our results are compared with previous measurements and with predictions
based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review
Letter
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Transforming Growth Factor-β1 Suppresses Hepatitis B Virus Replication by the Reduction of Hepatocyte Nuclear Factor-4α Expression
Several studies have demonstrated that cytokine-mediated noncytopathic suppression of hepatitis B virus (HBV) replication may provide an alternative therapeutic strategy for the treatment of chronic hepatitis B infection. In our previous study, we showed that transforming growth factor-beta1 (TGF-β1) could effectively suppress HBV replication at physiological concentrations. Here, we provide more evidence that TGF-β1 specifically diminishes HBV core promoter activity, which subsequently results in a reduction in the level of viral pregenomic RNA (pgRNA), core protein (HBc), nucleocapsid, and consequently suppresses HBV replication. The hepatocyte nuclear factor 4alpha (HNF-4α) binding element(s) within the HBV core promoter region was characterized to be responsive for the inhibitory effect of TGF-β1 on HBV regulation. Furthermore, we found that TGF-β1 treatment significantly repressed HNF-4α expression at both mRNA and protein levels. We demonstrated that RNAi-mediated depletion of HNF-4α was sufficient to reduce HBc synthesis as TGF-β1 did. Prevention of HNF-4α degradation by treating with proteasome inhibitor MG132 also prevented the inhibitory effect of TGF-β1. Finally, we confirmed that HBV replication could be rescued by ectopic expression of HNF-4α in TGF-β1-treated cells. Our data clarify the mechanism by which TGF-β1 suppresses HBV replication, primarily through modulating the expression of HNF-4α gene
Proposing a comprehensive is continuance model and its factors
Continuous use of information systems (IS) has become crucial for an organization’s survival as it provides efficiency and effectiveness of managing business transactions. Lacking continuance usage of IS poses an obstacle in the advancement of IS in an organization. Previous studies have examined continuance intention using the Expectation Confirmation Model (ECM) as it provides a basis of investigating IS continuance. However, the expansion in IS role in today’s business requires a further integration with other factors such as social support, experience, technology fit and self-efficacy. Therefore, the aim of this study is to develop a comprehensive IS continuance model through the extension of ECM by integrating new factors from other related theories. Upon developing the model, we extensively review the literature in order to understand the theories used, then extracted the relevant factors to be used in the model. The outcome of this study would provide the richness of knowledge in IS continuance domain and provides an opportunity for businesses to develop an effective plan of IS continuance in the organizations
- …