17 research outputs found

    Transference of Transport Anisotropy to Composite Fermions

    Full text link
    When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.Comment: 5 pages, 5 figure

    Spin-valley phase diagram of the two-dimensional metal-insulator transition

    Full text link
    Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the system's valley and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.Comment: 4 pages, 2 figure

    Valley polarization in MoS2 monolayers by optical pumping

    Full text link
    We report experimental evidences on selective occupation of the degenerate valleys in MoS2 monolayers by circularly polarized optical pumping. Over 30% valley polarization has been observed at K and K' valley via the polarization resolved luminescence spectra on pristine MoS2 monolayers. It demonstrates one viable way to generate and detect valley polarization towards the conceptual valleytronics applications with information carried by the valley index

    Spin and valley quantum Hall ferromagnetism in graphene

    Full text link
    In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic' zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
    corecore