57 research outputs found

    Determination and Validation of Discrete Element Model Parameters of Soybeans with Various Moisture Content for the Discharge Simulation from a Cylindrical Model Silo

    No full text
    This study investigates the physical parameters that affect the flow patterns of soybeans with various moisture content (12% to 60%) at varying orifice sizes (20, 40, and 60 mm) in a cylindrical silo. The flow conditions required to obtain a steady mass flow during discharge were evaluated via experiments and three-dimensional discrete element method (DEM) simulation. The discharged mass flow rates at different flow conditions provided the critical size of the orifice. If the reduced diameter (Dred) of an orifice is >5.59, the flow showed a steady state. Based on the mass flow index (MFI), the flow patterns at 40% and 60% moisture content at 40 and 60 mm orifice sizes, respectively, showed funnel flows. although these flow conditions were satisfied to maintain a steady flow. The maximum wall pressure for the funnel flow showed the location of the interlocking phenomenon where the stagnant zone began during discharging. DEM simulation was validated through the mass profiles using the parameters obtained by the experiments. This study demonstrates that the experimental and analytical results with DEM simulation predict the flow behaviors of soybeans well at various moisture contents. These results are useful for designing silos for continuous food processing

    The effect of intermittent drying on the cracking ratio of soybeans (Glycine max) at different relative humidity using reaction engineering approach modeling

    No full text
    Intermittent drying (ID) was applied to reduce soybean cracking because of the low moisture gradient and little thermal stress on soybeans during their tempering period. The drying temperature and relative humidity (RH) for the drying and tempering periods were 35°C and 20% and 25°C and 43%, respectively. The intermittency (α) of the drying was defined as the ratio of the drying period to the duration of the drying and tempering periods, and it varied at α = 1, 0.5, 0.4, and 0.25 to evaluate the drying characteristics and the soybeans’ quality. Intermittency processes redistributed the moisture in the soybean so that the low thermal stress was applied to the soybeans. The percentage of cracked grains increased with increasing the duration of drying period and decreasing tempering period. The moisture content and temperature changes during drying of soybeans were well fitted by reaction engineering approach (REA) modeling. Additionally, the physics that describe the soybeans’ drying behavior during ID were explained by the model parameters obtained from the REA modeling, such as the surface relative humidity and the surface water vapor concentration. ID showed the highest drying efficiency at α = 0.25 regarding the total drying time (13,800 s, i.e., the shortest drying time) and the lowest cracking ratio (<2.18%)

    Effects of Potato Protein Isolated Using Ethanol on the Gelation and Anti-Proteolytic Properties in Pacific Whiting Surimi

    No full text
    Pacific whiting is a primary species utilized for surimi processing in the Pacific Northwest of the US. However, endogenous protease in Pacific whiting surimi deteriorates the quality during slow cooking. The demand for clean-labeled and economically competitive protease inhibitors has been increasing. In the present study, the anti-proteolytic effect of potato protein isolate (PPI), a by-product from the potato starch industry, prepared using 20% ethanol on the endogenous protease activity of Pacific whiting (PW) surimi was investigated. The ohmic heating method was carried out for a better assessment of the anti-proteolytic activity of inhibitors. A factorial design was carried out in which the independent variables were the four types of inhibitors and their concentration (0, 0.5, 1, 2, and 3% w/w) at two heating conditions. The heating condition was used as a blocking factor. All experiments were randomized within each block. The addition of 2% PPI which demonstrated the highest anti-proteolytic activity among five different concentrations significantly increased the breaking force, penetration distance, and water retention ability of PW surimi gel as the endogenous proteases were effectively inhibited when heated ohmically at 60 °C for 30 min prior to heating up to 90 °C. In addition, SDS-PAGE disclosed that PPI successfully retained the intensity of myofibrillar heavy chain (MHC) protein of PW surimi gels even under the condition at which proteases could be activated at 60 °C. The whiteness of gels was not negatively affected by the addition of PPI. Comparing all samples, a denser and more ordered microstructure was obtained when PPI was added. A similar trend was found from the fractal dimension (Df) of the PPI-added gel’s microstructure. Therefore, PPI could be an effective and non-allergenic protease inhibitor in PW surimi leading to retaining the integrity of high gel quality

    Computational Fluid Dynamics (CFD) Modelling and Application for Sterilization of Foods: A Review

    No full text
    Computational fluid dynamics (CFD) is a powerful tool to model fluid flow motions for momentum, mass and energy transfer. CFD has been widely used to simulate the flow pattern and temperature distribution during the thermal processing of foods. This paper discusses the background of the thermal processing of food, and the fundamentals in developing CFD models. The constitution of simulation models is provided to enable the design of effective and efficient CFD modeling. An overview of the current CFD modeling studies of thermal processing in solid, liquid, and liquid-solid mixtures is also provided. Some limitations and unrealistic assumptions faced by CFD modelers are also discussed

    Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review

    No full text
    Freeze-drying is an important processing unit operation in food powder production. It offers dehydrated products with extended shelf life and high quality. Unfortunately, food quality attributes and grinding characteristics are affected significantly during the drying process due to the glass transition temperature (during drying operation) and stress generated (during grinding operation) in the food structure. However, it has been successfully applied to several biological materials ranging from animal products to plants products owning to its specific advantages. Recently, the market demands for freeze-dried and ground food products such as spices, vegetables, and fruits are on the increase. In this study, the effect of the freeze-drying process on quality attributes, such as structural changes, the influence of glass transition during grinding, together with the effect on grinding efficiency in terms of energy requirement, grinding yield, and morphological changes in the powder as a result of temperature, drying time were discussed. An overview of models for drying kinetics for freeze-dried food sample, and grinding characteristics developed to optimize the drying processes, and a prediction of the grinding characteristics are also provided. Some limitations of the drying process during grinding are also discussed together with innovative methods to improve the drying and grinding processes

    Effect of drying and grinding characteristics of colored potato (Solanum tuberosum L.) on tribology of mashed colored potato paste

    No full text
    The mouthfeel of mashed potato prepared with steamed purple flesh potato (SPFP) was investigated by measuring tribological and rheological characteristics. Mathematical models describing pre-processes such as drying and grinding associated with physical properties of mashed potato were also explored. The effect of drying temperature (60, 70, 80, and 90°C) on quality changes (moisture and anthocyanin content) of SPFP was successfully described (R2 > 0.9583). The sigmoid model was suitably applied to estimate particle sizes of dried SPFP during grinding (R2 > 0.9864). As the particle size of mashed SPFP increased, friction coefficient increased, and storage and loss modulus decreased. Taste, smoothness, and after-feel sensation were increased as particle sizes decreased, while appearance and odor showed no significant differences. To predict the sensory property using tribology and rheology, the specific conditions were successfully determined (R2 > 0.9926).A partir de la medición de las características tribológicas y reológicas se investigó la sensación producida en la boca por el puré de papas preparado con pulpa de papa morada al vapor (PPMV). Asimismo, se examinaron modelos matemáticos que describen procesos previos, como el secado y la trituración, asociados con las propiedades físicas del puré de papa. Se registró correctamente el efecto que distintas temperaturas de secado (60, 70, 80 y 90°C) tienen en los cambios de calidad (contenido de humedad y de antocianina) de la PPMV (R2 > 0,9583). Además, el modelo sigmoidal se aplicó de manera adecuada a fin de estimar el tamaño de las partículas de PPMV secadas durante la trituración (R2 > 0,9864). Se constató que cuando el tamaño de la partícula de PPMV era mayor se elevó el coeficiente de fricción y disminuyeron los módulos de almacenamiento y de pérdida. El sabor, la suavidad y la sensación posterior se incrementaron a medida que el tamaño de las partículas fue disminuyendo, mientras que la apariencia y el aroma no presentaron diferencias significativas. Se determinaron correctamente las condiciones específicas para pronosticar las propiedades sensoriales utilizando tribología y reología (R2 > 0,9926)

    Application of Computational Fluid Dynamics (CFD) in the Deposition Process and Printability Assessment of 3D Printing Using Rice Paste

    No full text
    Computational fluid dynamics (CFD) was utilized to investigate the deposition process and printability of rice paste. The rheological and preliminary printing studies showed that paste formed from rice to water ratio (100:80) is suitable for 3D printing (3DP). Controlling the ambient temperature at 47±5 °C also contributed to improving the printed sample’s structural stability. The viscoelastic simulation indicated that the nozzle diameter influenced the flow properties of the printed material. As the nozzle diameter decreased (1.2 mm to 0.8 mm), the die swell ratio increased (13.7 to 15.15%). The rise in the swell ratio was a result of the increasing pressure gradient at the nozzle exit (5.48×106 Pa to 1.53×107 Pa). The additive simulation showed that the nozzle diameter affected both the residual stress and overall deformation of the sample. CFD analysis, therefore, demonstrates a significant advantage in optimizing the operating conditions for printing rice paste

    Effects of Low-Temperature Drying with Intermittent Gaseous Chlorine Dioxide Treatment on Texture and Shelf-Life of Rice Cakes

    No full text
    We investigated the effect of chlorine dioxide (ClO2) under low temperature drying to suppress rice cake stickiness during the cutting process by initiating the onset of retrogradation until the stickiness is minimized for shelf-life extension. The intermittent ClO2 application at low-temperature drying was conducted at 10 °C for different drying periods (0, 6, 12, 18, and 24 h). Texture analysis showed significant differences with increasing values of hardness (901.39 ± 53.87 to 12,653 ± 1689.35 g) and reduced values of modified adhesiveness (3614.37 ±578.23 to 534.81 ± 89.37 g). The evaluation of rice cake stickiness during the cutting process revealed an optimum drying period of 18 h with no significant difference (p ≤ 0.05) compared to the 24 h drying process. Microbial contamination during the drying process increased, with microbial load from 6.39 ± 0.37 to 7.94 ± 0.29 CFU/g. Intermittent ClO2 application at 22 ppm successfully reduced the microbial load by 63% during drying process. The inhibitory property of ClO2 was further analyzed on a sample with high initial microbial load (3.01 ± 0.14 CFU/g) using primary and modified secondary growth models fitted to all experimental storage temperatures (5–25 °C) with R2 values > 0.99. The model demonstrated a strong inhibition by ClO2 with microbial growth not exceeding the accepted population threshold (106 CFU/g) for toxin production. The shelf-life of rice cake was increased by 86 h and 432 h at room temperature (25 °C) and 5 °C respectively. Microbial inactivation via ClO2 treatment is a novel method for improved food storage without additional thermal sterilization or the use of an additional processing unit

    Application of Computational Fluid Dynamics (CFD) Simulation for the Effective Design of Food 3D Printing (A Review)

    No full text
    The progress of food 3D printing (3DP) applications demands a full understanding of the printing behavior of food materials. Computational fluid dynamics (CFD) simulation can help determine the optimum processing conditions for food 3DP such as layer height, deposit thickness, volume flow rate, and nozzle shape and diameter under varied material properties. This paper mainly discusses the application of CFD simulation for three core processes associated with 3DP: (1) flow fields in the nozzle during the extrusion process; (2) die swelling of materials at the die (the exit part of the nozzle); and (3) the residual stress of printed products. The major achievements of CFD simulation in food 3DP with varied food materials are discussed in detail. In addition, the problems and potential solutions that modelers encountered when utilizing CFD in food 3DP were explored

    Effect of moisture uptake on the texture of dried laver Porphyra. (Nori) studied by mechanical characterization and NMR measurement

    No full text
    Mechanical property measurements, 1H T2 measurement by low-field (LF) NMR and 13C T1 measurement by high-resolution cross polarization/magic angle spinning (CP/MAS) solid-state NMR were carried out to evaluate the structural changes of Nori upon moisture uptake.The texture of dry Nori changed to be tough and then soft upon moisture uptake. The increase of 1H T2 and decrease of 13C T1 were observed with an increase of moisture content indicating the increase of the molecular mobility of Nori components.The results of the LF-NMR suggested that the increase of mobility of the inert protons in rigid components is more dominated than that of the labile protons in soft components when Nori becomes the soggy state, whereas the mobility of the soft part increases more by moisture uptake when Nori becomes the wet state. The changes of molecular mobility of each main component (proteins and porphyran) were well depicted by the 13C T1 measurement, which represented the hydration of porphyran and proteins in the pulps and binder part.The change of mechanical properties of Nori was successfully elucidated with the NMR relaxation measurements.公開日: 2022-10-0
    corecore