19,534 research outputs found
Numerical study of the random field Ising model at zero and positive temperature
In this paper the three dimensional random field Ising model is studied at
both zero temperature and positive temperature. Critical exponents are
extracted at zero temperature by finite size scaling analysis of large
discontinuities in the bond energy. The heat capacity exponent is
found to be near zero. The ground states are determined for a range of external
field and disorder strength near the zero temperature critical point and the
scaling of ground state tilings of the field-disorder plane is discussed. At
positive temperature the specific heat and the susceptibility are obtained
using the Wang-Landau algorithm. It is found that sharp peaks are present in
these physical quantities for some realizations of systems sized and
larger. These sharp peaks result from flipping large domains and correspond to
large discontinuities in ground state bond energies. Finally, zero temperature
and positive temperature spin configurations near the critical line are found
to be highly correlated suggesting a strong version of the zero temperature
fixed point hypothesis.Comment: 11 pages, 14 figure
LAMOST 1: A Disrupted Satellite in the Constellation Draco
Using LAMOST spectroscopic data, we find a strong signal of a comoving group
of stars in the constellation of Draco. The group, observed near the apocenter
of its orbit, is 2.6 kpc from the Sun with a metallicity of -0.64 dex. The
system is observed as a streaming population of unknown provenance with mass of
about 2.1E4 solar masses and an absolute V band magnitude of about -3.6. Its
high metallicity, diffuse physical structure, and eccentric orbit may indicate
that the progenitor satellite was a globular cluster rather than a dwarf galaxy
or an open cluster.Comment: 6 pages, 4 Figures, 1 Table, Accepted to ApJ
Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors
Dissipation is ubiquitous in quantum systems, and its interplay with
fluctuations is critical to maintaining quantum coherence. We experimentally
investigate the dissipation dynamics in single-walled carbon nanotubes coupled
to superconductors. The voltage-current characteristics display gate-tunable
hysteresis, with sizes that perfectly correlate with the normal state
resistance RN, indicating the junction undergoes a periodic modulation between
underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level
is tuned through a local conductance minimum, we observe a gate-controlled
transition from superconducting-like to insulating-like states, with a
"critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by
Physical Review Letter
Quantum and Classical Spins on the Spatially Distorted Kagome Lattice: Applications to Volborthite
In Volborthite, spin-1/2 moments form a distorted Kagom\'e lattice, of corner
sharing isosceles triangles with exchange constants on two bonds and
on the third bond. We study the properties of such spin systems, and show that
despite the distortion, the lattice retains a great deal of frustration.
Although sub-extensive, the classical ground state degeneracy remains very
large, growing exponentially with the system perimeter. We consider degeneracy
lifting by thermal and quantum fluctuations. To linear (spin wave) order, the
degeneracy is found to stay intact. Two complementary approaches are therefore
introduced, appropriate to low and high temperatures, which point to the same
ordered pattern. In the low temperature limit, an effective chirality
Hamiltonian is derived from non-linear spin waves which predicts a transition
on increasing , from type order to a new
ferrimagnetic {\em striped chirality} order with a doubled unit cell. This is
confirmed by a large-N approximation on the O() model on this lattice. While
the saddle point solution produces a line degeneracy, corrections
select the non-trivial wavevector of the striped chirality state. The quantum
limit of spin 1/2 on this lattice is studied via exact small system
diagonalization and compare well with experimental results at intermediate
temperatures. We suggest that the very low temperature spin frozen state seen
in NMR experiments may be related to the disconnected nature of classical
ground states on this lattice, which leads to a prediction for NMR line shapes.Comment: revised, section V about exact diagonalization is extensively
rewritten, 17 pages, 11 figures, RevTex 4, accepted by Phys. Rev.
Complementarity of Weak Lensing and Peculiar Velocity Measurements in Testing General Relativity
We explore the complementarity of weak lensing and galaxy peculiar velocity
measurements to better constrain modifications to General Relativity. We find
no evidence for deviations from GR on cosmological scales from a combination of
peculiar velocity measurements (for Luminous Red Galaxies in the Sloan Digital
Sky Survey) with weak lensing measurements (from the CFHT Legacy Survey). We
provide a Fisher error forecast for a Euclid-like space-based survey including
both lensing and peculiar velocity measurements, and show that the expected
constraints on modified gravity will be at least an order of magnitude better
than with present data, i.e. we will obtain 5% errors on the modified gravity
parametrization described here. We also present a model--independent method for
constraining modified gravity parameters using tomographic peculiar velocity
information, and apply this methodology to the present dataset.Comment: 8 pages, 5 figure
Tunable electronic anisotropy in single-crystal A2Cr3As3 (A = K, Rb) quasi-one-dimensional superconductors
Single crystals of A2Cr3As3 (A = K, Rb) were successfully grown using a
self-flux method and studied via structural, transport and thermodynamic
measurement techniques. The superconducting state properties between the two
species are similar, with critical temperatures of 6.1 K and 4.8 K in K2Cr3As3
and Rb2Cr3As3, respectively. However, the emergence of a strong normal state
electronic anisotropy in Rb2Cr3As3 suggests a unique electronic tuning
parameter is coupled to the inter-chain spacing in the A2Cr3As3 structure,
which increases with alkali metal ionic size while the one-dimensional
[(Cr3As3)^{2-}]_{\infty} chain structure itself remains essentially unchanged.
Together with dramatic enhancements in both conductivity and magnetoresistance
(MR), the appearance of a strong anisotropy in the MR of Rb2Cr3As3 is
consistent with the proposed quasi-one-dimensional character of band structure
and its evolution with alkali metal species in this new family of
superconductors.Comment: 6 pages, 8 figures; to appear in Phys. Rev.
- …