3,757 research outputs found
Cross-Disciplinary Analysis of the On-Farm Transition from Conventional to Organic Vegetable Production
This farm-scale analysis of the three-year transition to organic from conventional vegetable production tracked the changes in crop, soil, pest and management on two ranches (40 and 47 ha) in the Salinas Valley, California. Many small plantings of a diverse set of cash crop and cover crop species were used, as compared to only a few species in large monocultures in conventional production. The general trends with time were: increase in soil biological indicators, low soil nitrate pools, adequate crop nutrients, minor disease and weed problems, and sporadic mild insect damage. Some crops and cultivars consistently produced higher yields than others, relative to the maximum yield for a given crop. Differences in insect and disease damage were also observed. These results support the value of initially using a biodiverse set of taxa to reduce risk, then later choosing the best-suited varieties for optimal production. The grower used some principles of organic farming (e.g., crop diversity, crop rotation, and organic matter management), but also relied on substitution-based management, such as fertigation with soluble nutrients, initially heavy applications of organic pesticides, and use of inputs derived from off-farm sources. The organic transition was conducive to both production goals and environmental quality
SHG microscopic observations of polar state in Li-doped KTaO3 under electric field
Incipient ferroelectric KTaO3 with off-center Li impurity of the critical
concentration of 2.8 mol% was investigated in order to clarify the dipole glass
state under electric field. Using optical second-harmonic generation (SHG)
microscope, we observed a marked history dependence of SHG intensity through
zero-field cooling (ZFC), zero-field heating (ZFH), field heating after ZFC
(FH/ZFC) and FH after field cooling (FH/FC). These show different paths with
respect to temperature: In the ZFC/ZFH process, weak SHG was observed at low
temperature, while in the FH/ZFC process, relatively high SHG appears in a
limited temperature range below TF depending on the field strength, and in the
FC and FH/FC processes, the SHG exhibits ferroelectric-like temperature
dependence: it appears at the freezing temperature of 50K, increases with
decreasing temperature and has a tendency of saturation. These experimental
results strongly suggest that dipole glass state or polar nano-clusters which
gradually freezes with decreasing temperature is transformed into
semi-macroscopic polar state under the electric field. However at sufficiently
low temperature, the freezing is so strong that the electric field cannot
enlarge the polar clusters. These experimental results show that the polar
nano-cluster model similar to relaxors would be more relevant in KTaO3 doped
with the critical concentration of Li. Further experiments on the anisotropy of
SHG determine that the average symmetry of the field-induced polar phase is
tetragonal 4mm or 4, which is also confirmed by the X-ray diffraction
measurement.Comment: 26 pages, 8 figures, 1 tabl
Infrared absorption and Raman scattering on coupled plasmon--phonon modes in superlattices
We consider theoretically a superlattice formed by thin conducting layers
separated spatially between insulating layers. The dispersion of two coupled
phonon-plasmon modes of the system is analyzed by using Maxwell's equations,
with the influence of retardation included. Both transmission for the finite
plate as well as absorption for the semi-infinite superlattice in the infrared
are calculated. Reflectance minima are determined by the longitudinal and
transverse phonon frequencies in the insulating layers and by the density-state
singularities of the coupled modes. We evaluate also the Raman cross section
from the semi-infinite superlattice.Comment: 20 pages,14 figure
Iwasawa N=8 Attractors
Starting from the symplectic construction of the Lie algebra e_7(7) due to
Adams, we consider an Iwasawa parametrization of the coset E_7(7)/SU(8), which
is the scalar manifold of N=8, d=4 supergravity. Our approach, and the manifest
off-shell symmetry of the resulting symplectic frame, is determined by a
non-compact Cartan subalgebra of the maximal subgroup SL(8,R) of E_7(7). In
absence of gauging, we utilize the explicit expression of the Lie algebra to
study the origin of E_7(7)/SU(8) as scalar configuration of a 1/8-BPS extremal
black hole attractor. In such a framework, we highlight the action of a U(1)
symmetry spanning the dyonic 1/8-BPS attractors. Within a suitable
supersymmetry truncation allowing for the embedding of the Reissner-Nordstrom
black hole, this U(1) is interpreted as nothing but the global R-symmetry of
pure N=2 supergravity. Moreover, we find that the above mentioned U(1) symmetry
is broken down to a discrete subgroup Z_4, implying that all 1/8-BPS Iwasawa
attractors are non-dyonic near the origin of the scalar manifold. We can trace
this phenomenon back to the fact that the Cartan subalgebra of SL(8,R) used in
our construction endows the symplectic frame with a manifest off-shell
covariance which is smaller than SL(8,R) itself. Thus, the consistence of the
Adams-Iwasawa symplectic basis with the action of the U(1) symmetry gives rise
to the observed Z_4 residual non-dyonic symmetry.Comment: 1+26 page
Influence of Addition of Previously Fermented Juice to Alfalfa Ensiled at Different Moisture Contents
Alfalfa (Medicago sativa L.)was ensiled with or without previously fermented juice (PFJ) after wilting for 0, 3, 6 and 24 h. They were ensiled in 900ml glass bottles at 400g/800cm3 and preserved at 25°C for 45 d. The moisture content of the silages were 810, 730, 690 and 580g/kg, respectively. The PFJ was prepared by macerating 200g of freshly harvested alfalfa with 1,000ml of water, filtering through double cheese cloth, adding 20g/l sucrose and incubating anaerobically at 30°C for 2 d. They were added 2.5ml/kg of chopped alfalfa. Lactic acid fermentation of silage was enhanced bAlfalfa (Medicago sativa L.) was ensiled with or without previously fermented juice (PFy the addition of PFJ at every moisture content studied. Without additive, the pH of silages containing 810, 730, 690 and 580g moisture/kg were 4.95, 4.67, 5.26 and 5.50, respectively, while they were 4.42, 4.45, 4.53 and 4.72, respectively, in PFJ silages. This suggests that a high pH observed in wilted silage partially due to a lack of lactic acid bacteria (LAB) and addition of PFJ at ensiling provides enough LAB to lower it. PFJ was also effective in depressing clostridial fermentation at the moisture contents where butyric acid was found without it
Fast multipole networks
Two prerequisites for robotic multiagent systems are mobility and
communication. Fast multipole networks (FMNs) enable both ends within a unified
framework. FMNs can be organized very efficiently in a distributed way from
local information and are ideally suited for motion planning using artificial
potentials. We compare FMNs to conventional communication topologies, and find
that FMNs offer competitive communication performance (including higher network
efficiency per edge at marginal energy cost) in addition to advantages for
mobility
Residual Energies after Slow Quantum Annealing
Features of the residual energy after the quantum annealing are investigated.
The quantum annealing method exploits quantum fluctuations to search the ground
state of classical disordered Hamiltonian. If the quantum fluctuation is
reduced sufficiently slowly and linearly by the time, the residual energy after
the quantum annealing falls as the inverse square of the annealing time. We
show this feature of the residual energy by numerical calculations for
small-sized systems and derive it on the basis of the quantum adiabatic
theorem.Comment: 4 pages, 2 figure
Estimation of Spin-Spin Interaction by Weak Measurement Scheme
Precisely knowing an interaction Hamiltonian is crucial to realize quantum
information tasks, especially to experimentally demonstrate a quantum computer
and a quantum memory. We propose a scheme to experimentally evaluate the
spin-spin interaction for a two-qubit system by the weak measurement technique
initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically
confirm our proposed scheme in a specific system of a nitrogen vacancy center
in diamond. This means that the weak measurement can also be taken as a
concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter
- …