9 research outputs found

    Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms responsible for the cardiovascular mortality in type I diabetes (DM) have not been defined completely. We have shown in conscious dogs with DM that: <it>1</it>) baseline coronary blood flow (CBF) was significantly decreased, <it>2</it>) endothelium-dependent (ACh) coronary vasodilation was impaired, and <it>3</it>) reflex cholinergic NO-dependent coronary vasodilation was selectively depressed. The most likely mechanism responsible for the depressed reflex cholinergic NO-dependent coronary vasodilation was the decreased bioactivity of NO from the vascular endothelium. The goal of this study was to investigate changes in cardiac gene expression in a canine model of alloxan-induced type 1 diabetes.</p> <p>Methods</p> <p>Mongrel dogs were chronically instrumented and the dogs were divided into two groups: one normal and the other diabetic. In the diabetic group, the dogs were injected with alloxan monohydrate (40-60 mg/kg iv) over 1 min. The global changes in cardiac gene expression in dogs with alloxan-induced diabetes were studied using Affymetrix Canine Array. Cardiac RNA was extracted from the control and DM (n = 4).</p> <p>Results</p> <p>The array data revealed that 797 genes were differentially expressed (P < 0.01; fold change of at least ±2). 150 genes were expressed at significantly greater levels in diabetic dogs and 647 were significantly reduced. There was no change in eNOS mRNA. There was up regulation of some components of the NADPH oxidase subunits (gp91 by 2.2 fold, P < 0.03), and down-regulation of SOD1 (3 fold, P < 0.001) and decrease (4 - 40 fold) in a large number of genes encoding mitochondrial enzymes. In addition, there was down-regulation of Ca<sup>2+ </sup>cycling genes (ryanodine receptor; SERCA2 Calcium ATPase), structural proteins (actin alpha). Of particular interests are genes involved in glutathione metabolism (glutathione peroxidase 1, glutathione reductase and glutathione S-transferase), which were markedly down regulated.</p> <p>Conclusion</p> <p>our findings suggest that type I diabetes might have a direct effect on the heart by impairing NO bioavailability through oxidative stress and perhaps lipid peroxidases.</p

    Diabetes Alters Intracellular Calcium Transients in Cardiac Endothelial Cells

    Get PDF
    Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca2+]i) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca2+]i homeostasis due to altered sarcoplasmic reticulum Ca2+ ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca2+ regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca2+]i homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca2+]i transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca2+ ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca2+]i sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment

    Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle

    No full text
    corecore