5 research outputs found

    A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

    Full text link
    In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, SεIHS\geq \varepsilon I_{\mathcal{H}} for some ε>0\varepsilon >0 in a Hilbert space H\mathcal{H} to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian Δ+V-\Delta+V (in short, the perturbed Krein Laplacian) defined on C0(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set ΩRn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2.Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144

    Q-functions of Hermitian contractions of Krein-Ovcharenko type

    No full text
    In this paper operator-valued Q-functions of Krein-Ovcharenko type are introduced. Such functions arise from the extension theory of Hermitian contractive operators A in a Hilbert space h. The definition is related to the investigations of M.G. Krein and I.E. Ovcharenko of the so-called Q(mu) and Q(M)-functions. It turns out that their characterizations of such functions hold true only in the matrix valued case. The present paper extends the corresponding properties for wider classes of selfadjoint contractive extensions of A. For this purpose some peculiar but fundamental properties on the behaviour of operator ranges of positive operators will be used. Also proper characterizations for Q(mu)- and Q(M)-functions in the general operator-valued case are given. Shorted operators and parallel sums of positive operators will be needed to give a geometric understanding of the function-theoretic properties of the corresponding Q-functions
    corecore