15 research outputs found

    Human MLH1 Protein Participates in Genomic Damage Checkpoint Signaling in Response to DNA Interstrand Crosslinks, while MSH2 Functions in DNA Repair

    Get PDF
    DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSα and MutSβ mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents

    Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms

    Get PDF
    Accumulating evidence suggests that many cancers, including BRCA1- and BRCA2-associated breast cancers, are deficient in DNA repair processes. Both hereditary and sporadic breast cancers have been found to have significant downregulation of repair factors. This has provided opportunities to exploit DNA repair deficiencies, whether acquired or inherited. Here, we review efforts to exploit DNA repair deficiencies in tumors, with a focus on breast cancer. A variety of agents, including PARP (poly [ADP-ribose] polymerase) inhibitors, are currently under investigation in clinical trials and available results will be reviewed

    Replication-coupled DNA interstrand cross-link repair in Xenopus egg extracts

    No full text
    Interstrand cross-links (ICL) are one of the most hazardous types of DNA damage as they form a roadblock to all processes that involve strand separation. Repair of these lesions involves several different DNA repair pathways, but the molecular mechanism is unclear. Here we describe a system that allows the examination of ICL repair, via a physiological mechanism, in vitro. This system, which uses Xenopus egg extracts in combination with a DNA template that contains a site-specific ICL, represents a unique tool to study the molecular mechanism of ICL repair

    Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with Fanconi anemia (FA) suffer from multiple defects, most notably of the hematological compartment (bone marrow failure), and susceptibility to cancer. Cells from FA patients show increased spontaneous chromosomal damage, which is aggravated by exposure to low concentrations of DNA cross-linking agents such as mitomycin C or cisplatin. Five of the identified FA proteins form a nuclear core complex. However, the molecular function of these proteins remains obscure.</p> <p>Methods</p> <p>Oligonucleotide microarrays were used to compare the expression of approximately 12,000 genes from FA cells with matched controls. Expression profiles were studied in lymphoblastoid cell lines derived from three different FA patients, one from the FA-A and two from the FA-C complementation groups. The isogenic control cell lines were obtained by either transfecting the cells with vectors expressing the complementing cDNAs or by using a spontaneous revertant cell line derived from the same patient. In addition, we analyzed expression profiles from two cell line couples at several time points after a 1-hour pulse treatment with a discriminating dose of cisplatin.</p> <p>Results</p> <p>Analysis of the expression profiles showed differences in expression of a number of genes, many of which have unknown function or are difficult to relate to the FA defect. However, from a selected number of proteins involved in cell cycle regulation, DNA repair and chromatin structure, Western blot analysis showed that p21<sup><it>waf</it>1/<it>Cip</it>1 </sup>was significantly upregulated after low dose cisplatin treatment in FA cells specifically (as well as being expressed at elevated levels in untreated FA cells).</p> <p>Conclusions</p> <p>The observed increase in expression of p21<sup><it>waf</it>1/<it>Cip</it>1 </sup>after treatment of FA cells with crosslinkers suggests that the sustained elevated levels of p21<sup><it>waf</it>1/<it>Cip</it>1 </sup>in untreated FA cells detected by Western blot analysis likely reflect increased spontaneous damage in these cells.</p

    The FANCJ/MutLα interaction is required for correction of the cross-link response in FA-J cells

    No full text
    FANCJ also called BACH1/BRIP1 was first linked to hereditary breast cancer through its direct interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia (FA) gene product, establishing FANCJ as an essential tumor suppressor. Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in response to DNA interstrand crosslinks (ICLs). This accumulation is corrected by reintroduction of wild-type FANCJ. Here, we show that FANCJ interacts with the mismatch repair complex MutLα, composed of PMS2 and MLH1. Specifically, FANCJ directly interacts with MLH1 independent of BRCA1, through its helicase domain. Genetic studies reveal that FANCJ helicase activity and MLH1 binding, but not BRCA1 binding, are essential to correct the FA-J cells' ICL-induced 4N DNA accumulation and sensitivity to ICLs. These results suggest that the FANCJ/MutLα interaction, but not FANCJ/BRCA1 interaction, is essential for establishment of a normal ICL-induced response. The functional role of the FANCJ/MutLα complex demonstrates a novel link between FA and MMR, and predicts a broader role for FANCJ in DNA damage signaling independent of BRCA1
    corecore