334 research outputs found
Effects of neo-adjuvant chemotherapy for oesophago-gastric cancer on neuro-muscular gastric function
Delayed gastric emptying symptoms are often reported after chemotherapy. This study aims to characterise the effects of chemotherapy on gastric neuro-muscular function. Patients undergoing elective surgery for oesophago-gastric cancer were recruited. Acetylcholinesterase, nNOS, ghrelin receptor and motilin expressions were studied in gastric sections from patients receiving no chemotherapy (n = 3) or oesophageal (n = 2) or gastric (n = 2) chemotherapy. A scoring system quantified staining intensity (0–3; no staining to strong). Stomach sections were separately suspended in tissue baths for electrical field stimulation (EFS) and exposure to erythromycin or carbachol; three patients had no chemotherapy; four completed cisplatin-based chemotherapy within 6 weeks prior to surgery. AChE expression was markedly decreased after chemotherapy (scores 2.3 ± 0.7, 0.5 ± 0.2 and 0 ± 0 in non-chemotherapy, oesophageal- and gastric-chemotherapy groups (p < 0.03 each) respectively. Ghrelin receptor and motilin expression tended to increase (ghrelin: 0.7 ± 0.4 vs 2.0 ± 0.4 and 1.2 ± 0.2 respectively; p = 0.04 and p = 0.2; motilin: 0.7 ± 0.5 vs 2.2 ± 0.5 and 2.0 ± 0.7; p = 0.06 and p = 0.16). Maximal contraction to carbachol was 3.7 ± 0.7 g and 1.9 ± 0.8 g (longitudinal muscle) and 3.4 ± 0.4 g and 1.6 ± 0.6 (circular) in non-chemotherapy and chemotherapy tissues respectively (p < 0.05 each). There were loss of AChE and reduction in contractility to carbachol. The tendency for ghrelin receptors to increase suggests an attempt to upregulate compensating systems. Our study offers a mechanism by which chemotherapy markedly alters neuro-muscular gastric function
A Case of Cicatricial Alopecia Associated with Erlotinib
Erlotinib is a small-molecule tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR). Erlotinib has been used primarily to treat non-small cell lung cancer. In addition to its role in tumor cells, EGFR is also an important regulator of growth and differentiation in the skin and hair. Therefore, EGFR-TKIs have been associated with a number of cutaneous side effects including follicular acneiform eruptions, cutaneous xerosis, chronic paronychia, desquamation, seborrheic dermatitis, and hair texture changes. Herein, we report a rare case of a 61-year-old woman who was treated with erlotinib and experienced cicatricial alopecia
Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3
Topological insulators represent a new state of quantum matter attractive to
both fundamental physics and technological applications such as spintronics and
quantum information processing. In a topological insulator, the bulk energy gap
is traversed by spin-momentum locked surface states forming an odd number of
surface bands that possesses unique electronic properties. However, transport
measurements have often been dominated by residual bulk carriers from crystal
defects or environmental doping which mask the topological surface
contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological
insulator system to manipulate bulk conductivity by varying the Bi/Sb
composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as
topological insulators for the entire composition range by angle resolved
photoemission spectroscopy (ARPES) measurements and ab initio calculations.
Additionally, we observe a clear ambipolar gating effect similar to that
observed in graphene using nanoplates of (BixSb1-x)2Te3 in
field-effect-transistor (FET) devices. The manipulation of carrier type and
concentration in topological insulator nanostructures demonstrated in this
study paves the way for implementation of topological insulators in
nanoelectronics and spintronics.Comment: 7 pages, 4 figure
Increased prevalence of rotavirus among children associated gastroenteritis in Riyadh Saudi Arabia
The aim of this study is to assess the epidemiology along with the molecular structure of rotavirus causing pediatric diarrhea among Saudi patients. However, in this report we sited the epidemiological reflect coming from our project
Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers
This is an open access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.Abstract
Introduction
Evaluating the expression of signaling molecule proteins from the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3-kinase (PI3K) pathway in invasive breast cancers may identify prognostic marker(s) associated with early relapse.
Methods
Immunohistochemical analyses of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), PI3K-p110α, phospho-AKT, phospho-p70S6 kinase, phospho-S6 ribosomal protein, phospho-RAF, phospho-p44/42 MAPK, and heat-shock protein 90 (HSP90) were performed on tumor samples from 212 patients with invasive breast cancer. Statistically significant relations between protein expression, clinicopathologic factors, and relapse-free survival (RFS) were analyzed.
Results
Expression of HSP90 was associated with 5-year RFS, as well as T stage, N stage, histologic grade, estrogen receptor (ER) expression, human epidermal growth factor receptor 2 (HER2) expression, and the Ki-67 proliferation index. On multivariate analysis, coexpression of HSP90 and PI3K-p110α or expression of HSP90 along with PTEN loss demonstrated significantly worse RFS. In subgroup analyses, both exhibited strong prognostic significance in HER2-positive cases, but not in HER2-negative cases.
Conclusions
The coexpression of HSP90 with PI3K-p110α or expression of HSP90 along with PTEN loss has a potential as a molecular prognostic marker to predict early relapse in patients with invasive breast cancers
Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1
<p>Abstract</p> <p>Background</p> <p>The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its Cyclin partners, Cyclin T1 and Cyclin T2. The HIV-1 Tat transactivator protein enhances viral gene expression by exclusively recruiting the Cdk9-Cyclin T1 P-TEFb complex to a RNA element in nascent viral transcripts called TAR. The expression patterns of Cyclin T1 and Cyclin T2 in primary monocytes and CD4<sup>+ </sup>T cells suggests that Cyclin T2 may be generally involved in expression of constitutively expressed genes in quiescent cells, while Cyclin T1 may be involved in expression of genes up-regulated during macrophage differentiation, T cell activation, and conditions of increased metabolic activity To investigate this issue, we wished to identify the sets of genes whose levels are regulated by either Cyclin T2 or Cyclin T1.</p> <p>Findings</p> <p>We used shRNA lentiviral vectors to stably deplete either Cyclin T2 or Cyclin T1 in HeLa cells. Total RNA extracted from these cells was subjected to cDNA microarray analysis. We found that 292 genes were down- regulated by depletion of Cyclin T2 and 631 genes were down-regulated by depletion of Cyclin T1 compared to cells transduced with a control lentivirus. Expression of 100 genes was commonly reduced in either knockdown. Additionally, 111 and 287 genes were up-regulated when either Cyclin T2 or Cyclin T1 was depleted, respectively, with 45 genes in common.</p> <p>Conclusions</p> <p>These results suggest that there is limited redundancy in genes regulated by Cyclin T1 or Cyclin T2.</p
Adaptation of cortical activity to sustained pressure stimulation on the fingertip
Background
Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents.
Methods
We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation.
Results
Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation.
Conclusion
These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open
Cadmium resistance in tobacco plants expressing the MuSI gene
MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI transgenic tobacco plants absorbed less Cd than wild-type plants. Cd translocation from roots to shoots was reduced in the transgenic plants, thereby avoiding Cd toxicity. The number of short trichomes in the leaves of wild-type tobacco plants was increased by Cd treatment, while this was unchanged in MuSI transgenic tobacco. These results suggest that MuSI transgenic tobacco plants have enhanced tolerance to Cd via reduced Cd uptake and/or increased Cd immobilization in the roots, resulting in less Cd translocation to the shoots
- …