33 research outputs found

    Yolk utilization and growth during the early larval life of the Silver Perch, Bidyanus bidyanus (Mitchell, 1838)

    Get PDF
    The aim of this research was to investigate the yolk sac and oil globule utilization by silver perch (Bidyanus bidyanus) larvae produced from domesticated broodfish. The larvae were kept unfed in the holding tank, sampled, and investigated by image analysis software to determine various characteristics, such as the diameters of ova, water-hardened eggs, yolk-sac, oil globules, and the total length of larvae. The research illustrated that, with the exception of oil globule diameter, all other morphometric parameters were significantly lower (P < 0.05) when compared to the larvae from the wild broodfish. The yolk sac was completely absorbed at 96 h post-hatching (hph) and the oil globule was visible until 240 hph. The larvae exhibited predatory movements and tried to catch rotifer at 4 days post hatching (dph). However, the onset of feeding took place at 5 dph, while 100% of feeding occurred at 6 dph. During the first 96 h (h), larvae grew significantly faster than the next 144 h. Larvae encountered low mortalities (<10%) during the first 96 hph, before increasing significantly in the next 24 h and no unfed larvae survived post 240 h. The results also suggested that the exogenous feed should be available at 96 hph, which is well after the yolk sac is completely depleted. In addition, although most of eggs and larval performance from domesticated broodfish were inferior compared to the wild one, it has larger oil globule that could make longer of its mixed feeding period and therefore could have better in viability

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Innovative Scaffold Solution for Bone Regeneration Made of Beta-Tricalcium Phosphate Granules, Autologous Fibrin Fold, and Peripheral Blood Stem Cells

    No full text
    The drawbacks of traditional bone defect treatments have prompted the exploration of bone tissue engineering. The use of porous biomaterial scaffolds from calcium, bio-ceramic, and other different polymers to induce and increase bone cell and tissue growth is a present hot topic. In bone transplantation, the use of biomaterials may be a solution to avoid the lack of donor sites for autografts and the risk of rejection with allograft procedures. Challenges and efforts involve the use of engineered biomaterials that can mimic both the mechanical and biological properties of real bone tissue, supporting the vascularization of the implanted site. β-Tricalcium phosphate (β-TCP) has been used by dentists and clinicians for a decade in clinical applications on over a thousand patients with different bone pathologies including mandibular and maxillary reconstruction. This study aimed to explore suitable combination of β-TCP granules, autologous fibrin from human peripheral blood (hPB), and autologous peripheral blood stem cells (PB-SCs) for the realization of a bioscaffold (Compact Bio-BoneR) for bone regeneration and identify an efficient method to establish it as effective osteo-regenerators. It has been assessed that human PB is an exceptional source of multiple type of stem cells including mesenchymal (MSCs), neural (NSCs), hematopoietic (HSCs), and embryonic like (ESCs) which may differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes, and neurons. Isolated PB-SCs were induced into osteoblasts using β-TCP granules. Cultured PB-SCs were directly transferred and seeded into the scaffolds and induced to differentiate into osteoblasts. β-TCP granules with diameters of 1 mm and 1–2.5 mm were embedded in a fibrin gel matrix and PB-SCs were added successively. The bioscaffold was poured in culture with serum-free medium (SFM) for a period of 7–10 days. Improved proliferation of PBSCs was assessed by the expression of multipotent and pluripotent stem cell biomarkers performed by flow cytometry analysis as CD34, CD45, CD90, CD105, and SSEA3; osteoblasts were assessed by the positive expression of immune stain as alizarin red (AR), von Kossa (VK), and alkaline phosphatase (ALP). This study provides an alternative to biofunctionalized scaffold that exhibits improved osteogenesis that can be extremely beneficial in dentistry and orthopedics
    corecore