339 research outputs found

    Dynamic frame skipping for high-performance transcoding

    Get PDF
    2001-2002 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    New architecture for dynamic frame-skipping transcoder

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    On transcoding a B-frame to a P-frame in the compressed domain

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Low-complexity and high quality frame-skipping transcoder

    Get PDF
    2000-2001 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Low-complexity and high-quality frame-skipping transcoder for continuous presence multipoint video conferencing

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Electrical conduction in annealed semi-insulating InP

    Get PDF
    Variable-temperature current-voltage has been used to study the conduction properties of Fe-doped semi-insulating (SI) InP in the as-grown and annealed states. It is found that the trap-filling (TF) process disappears gradually with lengthening of annealing time. This phenomenon is explained by the decrease of the concentration of the empty Fe deep level (Fe 3+) that is caused by the thermally induced donor defect formation. The TF process cannot be observed in annealed undoped and long-time annealed Fe-doped SI InP material. The breakdown field of annealed undoped and Fe-doped SI InP is much lower than that of as-grown Fe-doped InP material. The breakdown field decreases with decreasing of temperature indicating an impact ionization process. This breakdown behavior is also in agreement with the fact that the concentration of the empty deep level in annealed InP is lowered. © 2000 American Institute of Physics.published_or_final_versio

    DX-like properties of the EL6 defect family in GaAs

    Get PDF
    Capacitance-voltage characterization at different temperatures and emission and capture deep-level transient spectroscopy carried out on undoped n-type GaAs lend strong confirmation to the recent suggestion that the EL6 defect arises from a center that is DX-like in nature. The evidence comes from the observation of an anomalous filling pulse duration dependence of the peak intensities of three to four different EL6 sublevels, similar to that recently found for the DX center in Al xGa 1-xAs and attributed to the charge redistribution. In addition, capture transients reveal large capture barriers (0.2-0.3 eV), which are typical of a defect undergoing large lattice relaxation into a deep-lying state. These observations indicate that the EL6 defect center comprises of a center with three to four slightly different ground-state configurations, each one of which forms as a result of some bond-breaking atomic displacement on capture of a second electron at the defect site. The significance of this in understanding the microstructure for the EL6 center is briefly discussed.published_or_final_versio

    Differential NOD/SCID mouse engraftment of peripheral blood CD34 + cells and JAK2V617F clones from patients with myeloproliferative neoplasms

    Get PDF
    We evaluated the NOD/SCID engraftment of CD34 + cells from polycythemia vera (PV) and secondary polycythemia patients (SP) and the JAK2V617F clone before and after transplantation. Peripheral blood CD34 + cells were transplanted intra-femorally. In the injected BM, successful engraftment (>0.1%) occurred in 8/26 mice transplanted with CD34+ cells from 5/13 PV patients (median: 4.26%, range: 0.3-5.56%), in contrast to 0/14 mice from 9 SP patients (P=0.017). The engrafting PV cells were of multi-lineage. JAK2V617F/total JAK2 ratios decreased after transplantation (initial: 65.9% versus 6-week: 13.0%, P=0.001). Essential thrombocythemia (ET) BM cells also exhibited a similar decrease in JAK2V617F clone. The results suggested that events in addition to JAK2V617F are involved in the pathogenesis of PV and ET. © 2010 Elsevier Ltd.postprin

    Native donors and compensation in Fe-doped liquid encapsulated Czochralski InP

    Get PDF
    Undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP has been studied by Hall effect, current-voltage (I-V), and infrared absorption (IR) spectroscopy. The results indicate that a native hydrogen vacancy complex donor defect exists in as-grown LEC InP. By studying the IR results, it is found that the concentration of this donor defect in Fe-doped InP is much higher than that in undoped InP. This result is consistent with the observation that a much higher concentration of Fe 2+ than the apparent net donor concentration is needed to achieve the semi-insulating (SI) property in InP. By studying the I-V and IR results of Fe-doped InP wafers sliced from different positions on an ingot, the high concentration of Fe 2+ is found to correlate with the existence of this hydrogen complex. The concentration of this donor defect is high in wafers from the top of an ingot. Correspondingly, a higher concentration of Fe 2+ can be detected in these wafers. These results reveal the influence of the complex defect on the compensation and uniformity of Fe-doped SI InP materials. © 2001 American Institute of Physics.published_or_final_versio
    corecore