12 research outputs found

    Solid-State Heating Using the Multicaloric Effect in Multiferroics

    Get PDF
    The multicaloric effect is defined as the adiabatic reversible temperature change in multiferroic materials induced by the application of an external electric or magnetic field, and it was first theoretically proposed in 2012. The multicaloric effects in multiferroics, as well as other similar caloric effects in single ferroics, such as magnetocaloric, elastocaloric, barocaloric, and electrocaloric, have been the focus of much research due to their potential commercialization in solid-state refrigeration. In this short communication article, we examine the thermodynamics of the multicaloric effect for solid-state heating applications. A possible thermodynamic multicaloric heating cycle is proposed and then implemented to estimate the solid-state heating effect for a known electrocaloric system. This work offers a path to implementing caloric and multicaloric effects to efficient heating systems, and we offer a theoretical estimate of the upper limit of the temperature change achievable in a multicaloric cooling or heating effect

    All-linear time reversal by a dynamic artificial crystal

    Get PDF
    The time reversal of pulsed signals or propagating wave packets has long been recognized to have profound scientific and technological significance. Until now, all experimentally verified time-reversal mechanisms have been reliant upon nonlinear phenomena such as four-wave mixing. In this paper, we report the experimental realization of all-linear time reversal. The time-reversal mechanism we propose is based on the dynamic control of an artificial crystal structure, and is demonstrated in a spin-wave system using a dynamic magnonic crystal. The crystal is switched from an homogeneous state to one in which its properties vary with spatial period a, while a propagating wave packet is inside. As a result, a linear coupling between wave components with wave vectors kā‰ˆĻ€/a and kā€²=kāˆ’2Ļ€Ļ€/aā‰ˆāˆ’Ļ€/a is produced, which leads to spectral inversion, and thus to the formation of a time-reversed wave packet. The reversal mechanism is entirely general and so applicable to artificial crystal systems of any physical nature
    corecore