2,526 research outputs found
A New genus of Soft Coral of the Family Alcyoniidae (Cnidaria, Octocorallia) with Re-Description of a New Combination and Description of a New Species
A new genus, Aldersladum (family Alcyoniidae), is established to accommodate a previously described species, Effl atounaria sodwanae Benayahu, 1993 (family Xeniidae) from Sodwana Bay, South Africa that was wrongly assigned to the latter genus. Th is species is redescribed and a second new species, A. jengi from Penghu Is., Taiwan, is described. Th e diagnostic features of the new genus include the presence of only figure-eight shaped platelets in all parts of the colony, thus differentiating it from all known genera of the Alcyoniidae. Based on examination of additional material from other localities, the zoogeographical distribution of the genus is confirmed to include the coral reefs of South Africa, Kenya, Gulf of Oman, Taiwan and Japan. Phylogenetic analyses of two mitochondrial genes strongly support its placement in the family Alcyoniidae
Interferences in the density of two Bose-Einstein condensates consisting of identical or different atoms
The density of two {\it initially independent} condensates which are allowed
to expand and overlap can show interferences as a function of time due to
interparticle interaction. Two situations are separately discussed and
compared: (1) all atoms are identical and (2) each condensate consists of a
different kind of atoms. Illustrative examples are presented.Comment: 12 pages, 3 figure
Wiener Reconstruction of Large-Scale Structure from Peculiar Velocities
We present an alternative, Bayesian method for large-scale reconstruction
from observed peculiar velocity data. The method stresses a rigorous treatment
of the random errors and it allows extrapolation into poorly sampled regions in
real space or in k-space. A likelihood analysis is used to determine the
fluctuation power spectrum, followed by a Wiener Filter (WF) analysis to obtain
the minimum-variance mean fields of velocity and mass density. Constrained
Realizations (CR) are then used to sample the statistical scatter about the WF
mean field. The WF/CR method is applied as a demonstration to the Mark III data
with 1200 km/s, 900 km/s, and 500 km/s resolutions. The main reconstructed
structures are consistent with those extracted by the POTENT method. A
comparison with the structures in the distribution of IRAS 1.2Jy galaxies
yields a general agreement. The reconstructed velocity field is decomposed into
its divergent and tidal components relative to a cube of +/-8000 km/s centered
on the Local Group. The divergent component is very similar to the velocity
field predicted from the distribution of IRAS galaxies. The tidal component is
dominated by a bulk flow of 194 +/- 32 km/s towards the general direction of
the Shapley concentration, and it also indicates a significant quadrupole.Comment: 28 pages and 8 GIF figures, Latex (aasms4.sty), submitted to ApJ.
Postscript version of the figures can be obtained by anonymous ftp from:
ftp://alf.huji.ac.il/pub/saleem
Evolution of Phase-Space Density in Dark Matter Halos
The evolution of the phase-space density profile in dark matter (DM) halos is
investigated by means of constrained simulations, designed to control the
merging history of a given DM halo. Halos evolve through a series of quiescent
phases of a slow accretion intermitted by violent events of major mergers. In
the quiescent phases the density of the halo closely follows the NFW profile
and the phase-space density profile, Q(r), is given by the Taylor & Navarro
power law, r^{-beta}, where beta ~ 1.9 and stays remarkably stable over the
Hubble time. Expressing the phase-space density by the NFW parameters, Q(r)=Qs
(r/Rs)^{-beta}, the evolution of Q is determined by Qs. We have found that the
effective mass surface density within Rs, Sigma_s = rhos Rs, remains constant
throughout the evolution of a given DM halo along the main branch of its
merging tree. This invariance entails that Qs ~ Rs^{-5/2} and Q(r) ~
Sigma_s^{-1/2} Rs^{-5/2} (r/ Rs)^{-beta}. It follows that the phase-space
density remains constant, in the sense of Qs=const., in the quiescent phases
and it decreases as Rs^{-5/2} in the violent ones. The physical origin of the
NFW density profile and the phase-space density power law is still unknown.
Yet, the numerical experiments show that halos recover these relations after
the violent phases. The major mergers drive Rs to increase and Qs to decrease
discontinuously while keeping Qs Rs^{5/2} = const. The virial equilibrium in
the quiescent phases implies that a DM halos evolves along a sequence of NFW
profiles with constant energy per unit volume (i.e., pressure) within Rs.Comment: 7 pages, 5 figures, accepted by the Astrophysical Journal. Revised, 2
figures adde
Hitting Diamonds and Growing Cacti
We consider the following NP-hard problem: in a weighted graph, find a
minimum cost set of vertices whose removal leaves a graph in which no two
cycles share an edge. We obtain a constant-factor approximation algorithm,
based on the primal-dual method. Moreover, we show that the integrality gap of
the natural LP relaxation of the problem is \Theta(\log n), where n denotes the
number of vertices in the graph.Comment: v2: several minor changes
Tight Bounds for MIS in Multichannel Radio Networks
Daum et al. [PODC'13] presented an algorithm that computes a maximal
independent set (MIS) within
rounds in an -node multichannel radio network with communication
channels. The paper uses a multichannel variant of the standard graph-based
radio network model without collision detection and it assumes that the network
graph is a polynomially bounded independence graph (BIG), a natural
combinatorial generalization of well-known geographic families. The upper bound
of that paper is known to be optimal up to a polyloglog factor.
In this paper, we adapt algorithm and analysis to improve the result in two
ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus
obtain an asymptotically optimal multichannel radio network MIS algorithm. In
addition, our new analysis allows to generalize the class of graphs from those
with polynomially bounded local independence to graphs where the local
independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201
Helical Tubes in Crowded Environments
When placed in a crowded environment, a semi-flexible tube is forced to fold
so as to make a more compact shape. One compact shape that often arises in
nature is the tight helix, especially when the tube thickness is of comparable
size to the tube length. In this paper we use an excluded volume effect to
model the effects of crowding. This gives us a measure of compactness for
configurations of the tube, which we use to look at structures of the
semi-flexible tube that minimize the excluded volume. We focus most of our
attention on the helix and which helical geometries are most compact. We found
that helices of specific pitch to radius ratio 2.512 to be optimally compact.
This is the same geometry that minimizes the global curvature of the curve
defining the tube. We further investigate the effects of adding a bending
energy or multiple tubes to begin to explore the more complete space of
possible geometries a tube could form.Comment: 10 page
Emergence of hyperons in failed supernovae: trigger of the black hole formation
We investigate the emergence of strange baryons in the dynamical collapse of
a non-rotating massive star to a black hole by the neutrino-radiation
hydrodynamical simulations in general relativity. By following the dynamical
formation and collapse of nascent proto-neutron star from the gravitational
collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the
hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s
after the bounce to trigger the re-collapse to a black hole. They start to show
up off center owing to high temperatures and later prevail at center when the
central density becomes high enough. The neutrino emission from the accreting
proto-neutron star with the hyperonic EOS stops much earlier than the
corresponding case with a nucleonic EOS while the average energies and
luminosities are quite similar between them. These features of neutrino signal
are a potential probe of the emergence of new degrees of freedom inside the
black hole forming collapse.Comment: 11 pages, 3 figures, accepted for publication in ApJ
Broadcasting in Noisy Radio Networks
The widely-studied radio network model [Chlamtac and Kutten, 1985] is a
graph-based description that captures the inherent impact of collisions in
wireless communication. In this model, the strong assumption is made that node
receives a message from a neighbor if and only if exactly one of its
neighbors broadcasts.
We relax this assumption by introducing a new noisy radio network model in
which random faults occur at senders or receivers. Specifically, for a constant
noise parameter , either every sender has probability of
transmitting noise or every receiver of a single transmission in its
neighborhood has probability of receiving noise.
We first study single-message broadcast algorithms in noisy radio networks
and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in
the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007
does not. We give a modified version of the algorithm of Gasieniec et al., 2007
that is robust to sender and receiver faults, and extend both this modified
algorithm and the Decay algorithm to robust multi-message broadcast algorithms.
We next investigate the extent to which (network) coding improves throughput
in noisy radio networks. We address the previously perplexing result of Alon et
al. 2014 that worst case coding throughput is no better than worst case routing
throughput up to constants: we show that the worst case throughput performance
of coding is, in fact, superior to that of routing -- by a
gap -- provided receiver faults are introduced. However, we show that any
coding or routing scheme for the noiseless setting can be transformed to be
robust to sender faults with only a constant throughput overhead. These
transformations imply that the results of Alon et al., 2014 carry over to noisy
radio networks with sender faults.Comment: Principles of Distributed Computing 201
- …