10 research outputs found

    Activation of transcription factors by extracellular nucleotides in immune and related cell types

    Get PDF
    Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-ÎşB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-ÎşB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field

    Cell signaling via the P2X7 nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking

    No full text
    Extracellular nucleotides can act as important intercellular signals in diverse biological processes, including the enhanced production of factors that are key to immune response regulation. One receptor that binds extracellular adenosine triphosphate released at sites of infection and injury is P2X7, which is an ionotrophic receptor that can also lead to the formation of a non-specific pore, activate multiple mitogen-activated protein kinases (MAPKs), and stimulate the production of immune mediators including interleukin family members and reactive oxygen species (ROS). In the present report, we have investigated the signaling mechanisms by which P2X7 promotes monocytic cell mediator production and induces transcription factor expression/phosphorylation, as well as how receptor-associated pore activity is regulated by intracellular trafficking. We report that P2X7 stimulates ROS production in macrophages through the MAPKs ERK1/2 and the nicotinamide adenine dinucleotide phosphate oxidase complex, activates several transcription factors including cyclic-AMP response element-binding protein and components of the activating protein-1 complex, and contains specific sequences within its intracellular C-terminus that appear critical for its activity. Altogether, these data further implicate P2X7 activation and signaling as a fundamental modulator of macrophage immune responses

    The biology of interleukin-1: Emerging concepts in the regulation of the actin cytoskeleton and cell junction dynamics

    No full text
    Interleukin (IL)-1 is a proinflammatory cytokine with important roles in innate immunity, as well as in normal tissue homeostasis. Interestingly, recent studies have also shown IL-1 to function in the dynamics of the actin cytoskeleton and cell junctions. For example, treatment of different epithelia with IL-1α often results in the restructuring of the actin network and cell junctions, thereby leading to junction disassembly. In this review, we highlight new and interesting findings that show IL-1 to be a critical player of restructuring events in the seminiferous epithelium of the testis during spermatogenesis

    Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions

    No full text

    Purinergic signalling and disorders of the central nervous system

    No full text
    corecore