39 research outputs found
Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets
<p>Abstract</p> <p>Background</p> <p>Flavonoids, a large group of polyphenolic metabolites derived from plants have received a great deal of attention over the last several decades for their properties in inflammation and allergy. Quercetin, the most abundant of plant flavonoids, exerts a modulatory action at nanomolar concentrations on human basophils. As this mechanism needs to be elucidated, in this study we focused the possible signal transduction pathways which may be affected by this compound. Methods: K2-EDTA derived leukocyte buffy coats enriched in basophil granulocytes were treated with different concentrations of quercetin and triggered with anti-IgE, fMLP, the calcium ionophore A23187 and the phorbol ester PMA in different experimental conditions. Basophils were captured in a flow cytometry analysis as CD123bright/HLADRnon expressing cells and fluorescence values of the activation markers CD63-FITC or CD203c-PE were used to produce dose response curves. The same population was assayed for histamine release.</p> <p>Results</p> <p>Quercetin inhibited the expression of CD63 and CD203c and the histamine release in basophils activated with anti-IgE or with the ionophore: the IC50 in the anti-IgE model was higher than in the ionophore model and the effects were more pronounced for CD63 than for CD203c. Nanomolar concentrations of quercetin were able to prime both markers expression and histamine release in the fMLP activation model while no effect of quercetin was observed when basophils were activated with PMA. The specific phosphoinositide-3 kinase (PI3K) inhibitor wortmannin exhibited the same behavior of quercetin in anti-IgE and fMLP activation, thus suggesting a role for PI3K involvement in the priming mechanism.</p> <p>Conclusions</p> <p>These results rule out a possible role of protein kinase C in the complex response of basophil to quercetin, while indirectly suggest PI3K as the major intracellular target of this compound also in human basophils.</p
Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides
Cholesterol, cytokines and diseases
Abstract
A high level of cholesterol is associated with obesity, cardiovascular diseases and atherosclerosis. Immune response in atherosclerosis is mediated by chemokines which attract monocytes, leading to the innate immune response characterised by the production of cytokines. The immunoregulatory cytokines are an important bridge between innate and adductive immunity. TH1 cytokines are involved as effector T cells in inflammatory response, while TH2 cytokines can be anti-inflammatory such as IL-10 and IL-4. It is well known that statins enhance the production of TH2 cytokines whereas the secretion of TH1 cytokines is suppressed. For this purpose, we studied the significance of anti-inflammatory effect and suppression of inflammation by statins. In this paper we revisited the role of cholesterol and cytokines IL-18, IL-10, IL-12, TNF-α, interferon-γ, and chemokines in inflammatory diseases
Allergic inflammation: role of cytokines with special emphasis on IL-4
This review examines recent articles on the relationship of cytokines to allergy and inflammation with particular emphasis on interleukin (IL)-4. The objective of this article is therefore to review published studies to identify cytokines consistently involved in allergic inflammation. Proinflammatory cytokines, including IL-4, IL-5, IL-13 and GM-CSF along with TNF-alpha play a role in allergen-induced airway leukocyte recruitment and these cytokines can be generated by T mast cells and other cells. In addition, IL-9, IL-25, IL-33, IL-17, IL-27 and IFN-gamma are deeply involved in the regulation of asthma. Blocking the effect of these proinflammatory cytokines might provide new therapeutic approaches for the control of allergy and inflammation