340 research outputs found

    On Lorentz violation in Horava-Lifshitz type theories

    Full text link
    We show that coupling the Standard Model to a Lorentz symmetry violating sector may co-exist with viable phenomenology, provided that the interaction between the two is mediated by higher-dimensional operators. In particular, if the new sector acquires anisotropic scaling behavior above a "Horava-Lifshitz" energy scale L_HL and couples to the Standard Model through interactions suppressed by M_P, the transmission of the Lorentz violation into the Standard Model is protected by the ratio L_HL^2/M_P^2. A wide scale separation, L_HL<<M_P, can then make Lorentz-violating terms in the Standard Model sector within experimental bounds without fine-tuning. We first illustrate our point with a toy example of Lifshitz-type neutral fermion coupled to photon via the magnetic moment operator, and then implement similar proposal for the Ho\v{r}ava-Lifshitz gravity coupled to conventional Lorentz-symmetric matter fields. We find that most radiatively induced Lorentz violation can be controlled by a large scale separation, but the existence of instantaneously propagating non-Lifshitz modes in gravity can cause a certain class of diagrams to remain quadratically divergent above L_HL. Such problematic quadratic divergence, however, can be removed by extending the action with terms of higher Lifshitz dimension, resulting in a completely consistent setup that can cope with the stringent tests of Lorentz invariance.Comment: 24 pages, Main results are very much strengthened in this new version, where the gauge-choice independence of the main conclusion has been proven. Furthermore a new extension that could improve the original model, which completely eliminates the need of fine-tuning, is propose

    "Light from chaos" in two dimensions

    Full text link
    We perform a Monte-Carlo study of the lattice two-dimensional gauged XY-model. Our results confirm the strong-coupling expansion arguments that for sufficiently small values of the spin-spin coupling the ``gauge symmetry breaking" terms decouple and the long-distance physics is that of the unbroken pure gauge theory. We find no evidence for the existence, conjectured earlier, of massless states near a critical value of the spin-spin coupling. We comment on recent remarks in the literature on the use of gauged XY-models in proposed constructions of chiral lattice gauge theories.Comment: 6 pages, 7 figure

    On 1-loop diagrams in AdS space and the random disorder problem

    Full text link
    We study the complex scalar loop corrections to the boundary-boundary gauge two point function in pure AdS space in Poincare coordinates, in the presence of a boundary quadratic perturbation to the scalar. These perturbations correspond to double trace perturbations in the dual CFT and modify the boundary conditions of the bulk scalars in AdS. We find that, in addition to the usual UV divergences, the 1-loop calculation suffers from a divergence originating in the limit as the loop vertices approach the AdS horizon. We show that this type of divergence is independent of the boundary coupling, and making use of which we extract the finite relative variation of the imaginary part of the loop via Cutkosky rules as the boundary perturbation varies. Applying our methods to compute the effects of a time-dependent impurity to the conductivities using the replica trick in AdS/CFT, we find that generally an IR-relevant disorder reduces the conductivity and that in the extreme low frequency limit the correction due to the impurities overwhelms the planar CFT result even though it is supposedly 1/N21/N^2 suppressed. Comments on the effect of time-independent impurity in such a system are presented.Comment: 22 pages, 3 figures, Boundary conditions clarified, some typos fixed, presentations improved and references adde

    Lattice chirality and the decoupling of mirror fermions

    Full text link
    We show, using exact lattice chirality, that partition functions of lattice gauge theories with vectorlike fermion representations can be split into "light" and "mirror" parts, such that the "light" and "mirror" representations are chiral. The splitting of the full partition function into "light" and "mirror" is well defined only if the two sectors are separately anomaly free. We show that only then is the generating functional, and hence the spectrum, of the mirror theory a smooth function of the gauge field background. This explains how ideas to use additional non-gauge, high-scale mirror-sector dynamics to decouple the mirror fermions without breaking the gauge symmetry--for example, in symmetric phases at strong mirror Yukawa coupling--are forced to respect the anomaly-free condition when combined with the exact lattice chiral symmetry. Our results also explain a paradox posed by a recent numerical study of the mirror-fermion spectrum in a toy would-be-anomalous two-dimensional theory. In passing, we prove some general properties of the partition functions of arbitrary chiral theories on the lattice that should be of interest for further studies in this field.Comment: 29 pages, 2 figures; published version, new addendu

    Resonance in Asymmetric Warped Geometry

    Full text link
    We study the spectrum of an asymmetric warped braneworld model with different AdS curvatures on either side of the brane. In addition to the RS-like modes we find a resonance state. Its mass is proportional to the geometric mean of the two AdS curvature scales, while the difference between them determines the strength of the resonance peak. There is a complementarity between the RS zero-mode and the resonance: making the asymmetry stronger weakens the zero-mode but strengthens the resonance, and vice versa. We calculate numerically the braneworld gravitational potential and discuss the holographic correspondence for the asymmetric model.Comment: 17 pages, 9 figures; v2 references with comments added; v3 two references added, JHEP versio
    • …
    corecore