15,218 research outputs found

    Two-Photon-Exchange Effects and Ξ”(1232)\Delta(1232) Deformation

    Full text link
    The two-photon-exchange (TPE) contribution in epβ†’epΟ€0ep\rightarrow ep\pi ^0 with W=MΞ”W=M_{\Delta} and small Q2Q^2 is calculated and its corrections to the ratios of electromagnetic transition form factors REM=E1+(3/2)/M1+(3/2)R_{EM} = E_{1+}^{(3/2)}/M_{1+}^{(3/2)} and RSM=S1+(3/2)/M1+(3/2)R_{SM} = S_{1+}^{(3/2)}/M_{1+}^{(3/2)}, are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full epβ†’epΟ€0ep\rightarrow ep\pi ^0 cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine the OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with Q2<2Q^2<2 GeV2^2. It gives small correction to REMR_{EM} while for RSMR_{SM}, the correction is about -10\% at small Ο΅\epsilon and about 1%1\% at large Ο΅\epsilon for Q2β‰ˆ2.5Q^2\approx2.5 GeV2^2. The large correction from TPE at small Ο΅\epsilon must be included in the analysis to get a reliable extraction of RSMR_{SM}.Comment: Talk given at Conference:C16-07-2

    A Novel A Priori Simulation Algorithm for Absorbing Receivers in Diffusion-Based Molecular Communication Systems

    Get PDF
    A novel a priori Monte Carlo (APMC) algorithm is proposed to accurately simulate the molecules absorbed at spherical receiver(s) with low computational complexity in diffusion-based molecular communication (MC) systems. It is demonstrated that the APMC algorithm achieves high simulation efficiency since by using this algorithm, the fraction of molecules absorbed for a relatively large time step length precisely matches the analytical result. Therefore, the APMC algorithm overcomes the shortcoming of the existing refined Monte Carlo (RMC) algorithm which enables accurate simulation for a relatively small time step length only. Moreover, for the RMC algorithm, an expression is proposed to quickly predict the simulation accuracy as a function of the time step length and system parameters, which facilitates the choice of simulation time step for a given system. Furthermore, a rejection threshold is proposed for both the RMC and APMC algorithms to significantly save computational complexity while causing an extremely small loss in accuracy.Comment: 11 pages, 14 figures, submitted to IEEE Transactions on NanoBioscience. arXiv admin note: text overlap with arXiv:1803.0463
    • …
    corecore