182,487 research outputs found

    Guest editorial: Memetic computing in the presence of uncertainties

    Get PDF
    Copyright @ Springer-Verlag 2010.The Guest Editors acknowledge the research support by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing, and by the UK Engineering and Physical Sciences Research Council (EPSRC) Project: Evolutionary Algorithms for Dynamic Optimisation Problems, under Grant EP/E060722/1

    Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse

    Get PDF
    We study the field-ionization threshold behavior when a Rydberg atom is ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are considered. The required threshold field amplitude is found to scale \emph{inversely} with the binding energy when the pulse duration becomes shorter than the classical Rydberg period, and, thus, more weakly bound electrons require larger fields for ionization. This threshold scaling behavior is confirmed by both 3D classical trajectory Monte Carlo simulations and numerically solving the time-dependent Schr\"{o}dinger equation. More surprisingly, the same scaling behavior in the short pulse limit is also followed by the ionization thresholds for much lower bound states, including the hydrogen ground state. An empirical formula is obtained from a simple model, and the dominant ionization mechanism is identified as a nonzero spatial displacement of the electron. This displacement ionization should be another important mechanism beyond the tunneling ionization and the multiphoton ionization. In addition, an "ionization window" is shown to exist for the ionization of Rydberg states, which may have potential applications to selectively modify and control the Rydberg-state population of atoms and molecules

    SPLODE: Semi-Probabilistic Point and Line Odometry with Depth Estimation from RGB-D Camera Motion

    Get PDF
    Active depth cameras suffer from several limitations, which cause incomplete and noisy depth maps, and may consequently affect the performance of RGB-D Odometry. To address this issue, this paper presents a visual odometry method based on point and line features that leverages both measurements from a depth sensor and depth estimates from camera motion. Depth estimates are generated continuously by a probabilistic depth estimation framework for both types of features to compensate for the lack of depth measurements and inaccurate feature depth associations. The framework models explicitly the uncertainty of triangulating depth from both point and line observations to validate and obtain precise estimates. Furthermore, depth measurements are exploited by propagating them through a depth map registration module and using a frame-to-frame motion estimation method that considers 3D-to-2D and 2D-to-3D reprojection errors, independently. Results on RGB-D sequences captured on large indoor and outdoor scenes, where depth sensor limitations are critical, show that the combination of depth measurements and estimates through our approach is able to overcome the absence and inaccuracy of depth measurements.Comment: IROS 201

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page
    • …
    corecore