14 research outputs found

    TNF-α and IL-17A induce the expression of lympho-epithelial Kazal-type inhibitor in epidermal keratinocytes

    Get PDF
    BACKGROUND: Serine proteases have important roles in skin barrier function and desquamation, and the aberrant expression or the dysfunction of serine proteases is associated with the pathogenesis of skin diseases. Serine protease activities are tightly regulated by serine proteases such as kallikrein-related peptidases (KLKs) and serine protease inhibitors such as lympho-epithelial Kazal-type related inhibitor (LEKTI). For a better understating of diseases' pathogenesis, the regulation mechanism of serine proteases and the inhibitors' expression in epidermal keratinocytes must be clarified. OBJECTIVES: To investigate the effects of the cytokines on the expression of LEKTI in epidermal keratinocytes. METHODS: Normal human epidermal keratinocytes (NHEKs) were stimulated with panels of inflammatory cytokines. The expression of serine protease inhibitors was analyzed using quantitative real-time PCR and ELISA. LEKTI expression in normal human skin and lesions from psoriasis or atopic dermatitis (AD) were analyzed by immunohistochemically and tape-stripping. Trypsin- and chymotrypsin-like serine protease activities in culture supernatants were measured by using specific substrates. RESULTS: TNF-α and IL-17A significantly induced the expression of LEKTI in NHEKs. The immunohistochemical and tape-stripping analysis revealed that psoriatic skin lesions had higher LEKTI expression compared to normal skin and AD lesions. Trypsin- and chymotrypsin-like protease activities in the culture media were upregulated 3-5 days later but attenuated 6-7 days later period by these cytokines. CONCLUSIONS: In epidermal keratinocytes, the Th1&Th17 cytokines TNF-α and IL-17A induce the expression of serine protease inhibitor LEKTI, and it might occur to suppress the increase in the serine protease activities under inflammation

    Long-chain monounsaturated fatty acids improve endothelial function with altering microbial flora

    Get PDF
    Fish oil-derived long-chain monounsaturated fatty acids (LCMUFAs) with a carbon chain length longer than 18 units ameliorate cardiovascular risk in mice. In this study, we investigated whether LCMUFAs could improve endothelial functions in mice and humans. In a double-blind, randomized, placebo-controlled, parallel-group, multi-center study, healthy subjects were randomly assigned to either an LCMUFA oil (saury oil) or a control oil (olive and tuna oils) group. Sixty subjects were enrolled and administrated each oil for 4 weeks. For the animal study, ApoE−/− mice were fed a Western diet supplemented with 3% of either gadoleic acid (C20:1) or cetoleic acid (C22:1) for 12 weeks. Participants from the LCMUFA group showed improvements in endothelial function and a lower trimethylamine-N-oxide level, which is a predictor of coronary artery disease. C20:1 and C22:1 oils significantly improved atherosclerotic lesions and plasma levels of several inflammatory cytokines, including IL-6 and TNF-α. These beneficial effects were consistent with an improvement in the gut microbiota environment, as evident from the decreased ratio of Firmicutes and/ or Bacteroidetes, increase in the abundance of Akkermansia, and upregulation of short-chain fatty acid (SCFA)-induced glucagon-like peptide-1 (GLP-1) expression and serum GLP-1 level. These data suggest that LCMUFAs alter the microbiota environment that stimulate the production of SCFAs, resulting in the induction of GLP-1 secretion. Fish oil-derived long-chain monounsaturated fatty acids might thus help to protect against cardiovascular disease

    Latitudinal variation of vertical eddy diffusivity estimated from the distribution of overturns in the western part of the south Pacific Ocean

    Get PDF
    東京水産大学海洋環境学科東京水産大学海洋環境学科東京水産大学海洋環境学科東京水産大学大学院理学系研究科東京水産大学練習船東京水産大学練習船東京水産大学練習船東京水産大学練習船東京水産大学練習船東京水産大学海洋環境学

    Long-Term Voyages and Bone Mass Among Seamen

    Get PDF
    東京水産大学海洋生産学専攻東京水産大学練習船海鷹丸東京水産大学練習船神鷹丸東京水産大学練習船海鷹丸東京水産大学練習船海鷹丸東京水産大学練習船神鷹丸東京水産大学練習船神鷹丸東京水産大学練習船海鷹丸東京水産大学練習船神鷹丸東京水産大学海洋生産学科東京水産大学海洋生産学

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore