26,431 research outputs found

    On the phase transition of light in cavity QED lattices

    Full text link
    Systems of strongly interacting atoms and photons, that can be realized wiring up individual cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles here we argue that the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons coupled locally with two-level systems through the elementary light-matter interaction described by the Rabi model, we argue that the inclusion of counter rotating terms, so far neglected, is crucial to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need for an artificially engineered chemical potential. We show that the competition between photon delocalization and Rabi non-linearity drives the system across a novel Z2Z_2 parity symmetry-breaking quantum criticality between two gapped phases which shares similarities with the Dicke transition of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.Comment: 5+3 pages, published versio

    LIGO End-to-End simulation Program

    Get PDF
    A time-domain simulation program has been developed to provide an accurate description of interferometric gravitational wave detectors. This is being utilized to build a model of LIGO with the aim of aiding in the shakedown and integration of the interferometer subsystems, and ultimately the optimization of detector sensitivity

    Coulomb drag by small momentum transfer between quantum wires

    Full text link
    We demonstrate that in a wide range of temperatures Coulomb drag between two weakly coupled quantum wires is dominated by processes with a small interwire momentum transfer. Such processes, not accounted for in the conventional Luttinger liquid theory, cause drag only because the electron dispersion relation is not linear. The corresponding contribution to the drag resistance scales with temperature as T^2 if the wires are identical, and as T^5 if the wires are different

    Direct Numerical Simulations of Electrophoresis of Charged Colloids

    Get PDF
    We propose a numerical method to simulate electrohydrodynamic phenomena in charged colloidal dispersions. This method enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier--Stokes equations so that the electrohydrodynamic couplings can be fully taken into account. The electrophoretic mobilities of charged spherical particles are calculated in several situations. The comparisons with approximation theories show quantitative agreements for dilute dispersions without any empirical parameters, however, our simulation predicts notable deviations in the case of dense dispersions.Comment: 4pages, 3figures, to appear in Phys. Rev. Let

    Small-Scale Fluctuations in Cosmic X-ray Background : A Power Spectrum Approach

    Get PDF
    Equations to investigate fluctuations in cosmic X-ray background radiation due to point-like sources at high-redshift are formulated in a systematic way. The angular power spectrum of X-ray background fluctuations is investigated from large-scales to small-scales in various cosmological models such as open universe models and models with the cosmological constant, assuming a simple evolution model of the sources. The effect of epoch-dependent bias is demonstrated for small-angle fluctuations. The contribution from shot noise fluctuations is also discussed.Comment: 12 pages, 4 figures, Phys.Rev.D in pres

    Approximate quantum error correction can lead to better codes

    Get PDF
    We present relaxed criteria for quantum error correction which are useful when the specific dominant noise process is known. These criteria have no classical analogue. As an example, we provide a four-bit code which corrects for a single amplitude damping error. This code violates the usual Hamming bound calculated for a Pauli description of the error process, and does not fit into the GF(4) classification.Comment: 7 pages, 2 figures, submitted to Phys. Rev.

    Semiclassical theory of the emission properties of wave-chaotic resonant cavities

    Full text link
    We develop a perturbation theory for the lifetime and emission intensity for isolated resonances in asymmetric resonant cavities. The inverse lifetime Γ\Gamma and the emission intensity I(θ)I(\theta) in the open system are expressed in terms of matrix elements of operators evaluated with eigenmodes of the closed resonator. These matrix elements are calculated in a semiclassical approximation which allows us to represent Γ\Gamma and I(θ)I(\theta) as sums over the contributions of rays which escape the resonator by refraction.Comment: 4 pages, 2 color figure

    Neutron Irradiation of Sm-1111

    Full text link
    SmFeAsO1x_{1-x}Fx_x was irradiated in a fission reactor to a fast (E > 0.1 MeV) neutron fluence of 4x10^21{21} m2^{-2}. The introduced defects increase the normal state resistivity due to a reduction in the mean free path of the charge carriers. This leads to an enhancement of the upper critical field at low temperatures. The critical current density within the grains, Jc, increases upon irradiation. The second maximum in the field dependence of Jc disappears and the critical current density becomes a monotonically decreasing function of the applied magnetic field
    corecore